Результаты поиска по 'analytical estimation':
Найдено статей: 35
  1. Bashkirtseva I.A., Boyarshinova P.V., Ryazanova T.V., Ryashko L.B.
    Analysis of noise-induced destruction of coexistence regimes in «prey–predator» population model
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660

    The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.

    Views (last year): 14. Citations: 4 (RSCI).
  2. Yakovleva T.V.
    Signal and noise parameters’ determination at rician data analysis by method of moments of lower odd orders
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 717-728

    The paper develops a new mathematical method of the joint signal and noise parameters determination at the Rice statistical distribution by method of moments based upon the analysis of data for the 1-st and the 3-rd raw moments of the random rician value. The explicit equations’ system have been obtained for required parameters of the signal and noise. In the limiting case of the small value of the signal-to-noise ratio the analytical formulas have been derived that allow calculating the required parameters without the necessity of solving the equations numerically. The technique having been elaborated in the paper ensures an efficient separation of the informative and noise components of the data to be analyzed without any a-priori restrictions, just based upon the processing of the results of the signal’s sampled measurements. The task is meaningful for the purposes of the rician data processing, in particular in the systems of magnetic-resonance visualization, in ultrasound visualization systems, at the optical signals’ analysis in range measuring systems, in radio location, etc. The results of the investigation have shown that the two parameter task solution of the proposed technique does not lead to the increase in demanded volume of computing resources compared with the one parameter task being solved in approximation that the second parameter of the task is known a-priori There are provided the results of the elaborated technique’s computer simulation. The results of the signal and noise parameters’ numerical calculation have confirmed the efficiency of the elaborated technique. There has been conducted the comparison of the accuracy of the sought-for parameters estimation by the technique having been developed in this paper and by the previously elaborated method of moments based upon processing the measured data for lower even moments of the signal to be analyzed.

    Views (last year): 10. Citations: 1 (RSCI).
  3. Aristov V.V., Muzyka A.A., Stroganov A.V.
    Application of the computer analogy method for solving complex nonlinear systems of differential equations
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1083-1104

    This study develops a previously proposed Method of Computer Analogy (MCA) based on formalization of digital computer operations. The paper discusses the position of the proposed approach among other well-known methods. It is emphasized that the primary objective is to derive analytical solutions, although in some cases they have to resort to semianalytical approximations. The paper focuses on constructing solutions for systems which, for certain parameter values, demonstrate the deterministic chaos behavior, namely Lorenz, Marioka – Shimitsu and R¨ossler systems. The paper also considers obtaining solution for Van der Pol equation (reduced to a nonlinear system). The aim of the study is to construct semi-analytical solutions represented as a segment of a power series in a step size of approximating difference scheme. To prevent overflow, authors formalize rank transfer operation. The authors apply a convergent difference scheme, referred to as the “guiding” scheme, to advance to the next step of the independent variable. The resulting approximation by a sum with only a few terms provides an approximation to the solution with any accuracy in accordance with the accuracy of the governing difference scheme. The senior digits in the resulting approximation exhibit probabilistic properties that can be modeled by known distributions, thereby enabling the derivation of analytical and semi-analytical approximations. The paper presents linear approximations that are the base for a complete approximations of solutions and provide important qualitative as well as some quantitative properties of solutions of considered systems. This work describes approximations of various orders, including those that do not guarantee convergence to the exact solution, but simplify the analysis of certain properties of nonlinear equations and systems. In particular, for the Van der Pol equation, authors demonstrate that its corresponding system has a cyclic solution and provide an estimate of its scale. A modification of the MCA that has features of the Monte Carlo method makes it possible to remove recurrent sequences and construct complete solutions in simple situations. The authors mention a promising approach for representing the solution using branched continued fractions.

  4. Solbakov V.V., Zatsepa S.N., Ivchenko A.A.
    A mathematical model for estimating the zone of intense evaporation of gas condensate during emissions from shallow wells
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 243-259

    Safe carrying out of emergency recovery operations at emergency offshore gas condensate wells is possible when taking into account the hazardous factors that prevent anti-fontanning measures. One of such factors is the gassiness of the operation zone due to the release from the water column of a large amount of light, as compared to air, natural gas, as well as vapours of heavier components of gas condensate. To estimate the distribution of explosive concentration of petroleum product vapours in the near surface layer of the atmosphere, it is necessary to determine the characteristics of the source of the contamination. Based on the analysis of theoretical works concerning to the formation of the velocity field in the upper layer of the sea as a result of large amounts of gas coming to the surface, an analytical model is proposed to calculate the size of the area in which a significant amount of gas condensate coming to the surface is vaporised during accidents at shallow-water wells. The stationary regime of reservoir fluid flow during fountaining of offshore gas and oil wells with an underwater location of their mouths is considered. A low-parametric model of oil product evaporation from films of different thickness is constructed. It is shown that the size of the zone of intensive evaporation at shallow-water wells is determined by the volume flow of liquid fraction, its fractional composition and selected threshold for estimation of oil product vapour flow into the atmosphere. In the context of this work shallow water wells are wells with gas flow rate from 1 to 20 million cubic meters at sea depths of about 50–200 metres. In this case, the formation fluid jet from the wellhead on the seabed is transformed into a bubble plume, the stratification of the water column, typical for the summer-autumn period, does not limit the plume’s exit to the sea surface, and the velocity of bubble rise allows the gas dissolution process to be disregardded. The analysis was limited to almost calm hydrometeorological conditions. Such conditions are favourable for offshore operations, but unfavourable from the point of view of dispersion of high concentrations of oil product vapours in the near surface layer of the atmosphere. As a result of this work, an analytical dependence for an approximate assessment of the zone of intensive evaporation of gas condensate is proposed.

  5. Kudryashova O.B., Vorozhtsov A.B., Mikhailov Y.M.
    Study of the possibility of detecting traces of hazardous substances based on vapor detection
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 451-463

    The article investigates the possibility of detecting traces of hazardous substances (explosives and narcotics) based on the detection of their vapors in the air. The relevance of the study stems from the need to counter terrorist threats and drug trafficking, where identifying even trace amounts of substances is critical. The focus is on mathematical modeling of the evaporation of a thin substance layer from a surface, based on molecular kinetic theory. A universal model is proposed, accounting for the physicochemical properties of substances, ambient temperature, adhesion to the surface, and the initial mass of the layer. Using the Hertz – Knudsen – Langmuir and Clausius – Clapeyron equations, analytical expressions are derived for the complete evaporation time, maximum vapor mass, and process dynamics. A dimensionless parameter, $\gamma$, is identified, determining the limiting conditions for evaporation. It is shown that substance adhesion (coefficient $\alpha$) affects the evaporation rate but not the final vapor mass. Calculations were performed for six model substances (TNT, RDX, PETN, amphetamine, cocaine, heroin) with a wide range of properties. At room temperature and a surface concentration of 100 ng/cm2, most substances evaporate completely, except for RDX, which remains on the surface at 84%. Evaporation times range from fractions of a second (amphetamine) to several hours (heroin). For low-volatility substances, the maximum mass capable of evaporating under given conditions is determined. The novelty of the work lies in the development of a universal model applicable to a broad class of hazardous substances and in identifying key parameters governing the evaporation process. The results enable the estimation of detection limits for trace substances using vapor-based methods and can be applied in the design of security systems.

  6. Aponin Yu.M., Aponina E.A.
    The invariance principle of La-Salle and mathematical models for the evolution of microbial populations
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 177-190

    A mathematical model for the evolution of microbial populations during prolonged cultivation in a chemostat has been constructed. This model generalizes the sequence of the well-known mathematical models of the evolution, in which such factors of the genetic variability were taken into account as chromosomal mutations, mutations in plasmid genes, the horizontal gene transfer, the plasmid loss due to cellular division and others. Liapunov’s function for the generic model of evolution is constructed. The existence proof of bounded, positive invariant and globally attracting set in the state space of the generic mathematical model for the evolution is presented because of the application of La-Salle’s theorem. The analytic description of this set is given. Numerical methods for estimate of the number of limit sets, its location and following investigation in the mathematical models for evolution are discussed.

    Views (last year): 8. Citations: 3 (RSCI).
  7. Turchenkov D.A., Turchenkov M.A.
    Analysis of simplifications of numerical schemes for Langevin equation, effect of variations in the correlation of augmentations
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 325-338

    The possibility to simplify the integration of Langevin equation using the variation of correlation between augmentation was researched. The analytical expression for a set of numerical schemes is presented. It’s shown that asymptotic limits for squared velocity depend on step size. The region of convergence and the convergence orders were estimated. It turned out that the incorrect correlation between increments decrease the accuracy down to the level of first-order methods for schemes based on precise solution.

    Views (last year): 5. Citations: 4 (RSCI).
  8. Ryashko L.B., Slepukhina E.S.
    Analysis of additive and parametric noise effects on Morris – Lecar neuron model
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 449-468

    This paper is devoted to the analysis of the effect of additive and parametric noise on the processes occurring in the nerve cell. This study is carried out on the example of the well-known Morris – Lecar model described by the two-dimensional system of ordinary differential equations. One of the main properties of the neuron is the excitability, i.e., the ability to respond to external stimuli with an abrupt change of the electric potential on the cell membrane. This article considers a set of parameters, wherein the model exhibits the class 2 excitability. The dynamics of the system is studied under variation of the external current parameter. We consider two parametric zones: the monostability zone, where a stable equilibrium is the only attractor of the deterministic system, and the bistability zone, characterized by the coexistence of a stable equilibrium and a limit cycle. We show that in both cases random disturbances result in the phenomenon of the stochastic generation of mixed-mode oscillations (i. e., alternating oscillations of small and large amplitudes). In the monostability zone this phenomenon is associated with a high excitability of the system, while in the bistability zone, it occurs due to noise-induced transitions between attractors. This phenomenon is confirmed by changes of probability density functions for distribution of random trajectories, power spectral densities and interspike intervals statistics. The action of additive and parametric noise is compared. We show that under the parametric noise, the stochastic generation of mixed-mode oscillations is observed at lower intensities than under the additive noise. For the quantitative analysis of these stochastic phenomena we propose and apply an approach based on the stochastic sensitivity function technique and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable limit cycle, this domain is a confidence band. The study of the mutual location of confidence bands and the boundary separating the basins of attraction for different noise intensities allows us to predict the emergence of noise-induced transitions. The effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimations with results of direct numerical simulations.

    Views (last year): 11.
  9. Potapov I.I., Reshetnikova O.V.
    The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 979-992

    The two significant geometric parameters are proposed that affect the physical quantities interpolation in the smoothed particle hydrodynamics method (SPH). They are: the smoothing coefficient which the particle size and the smoothing radius are connecting and the volume coefficient which determine correctly the particle mass for a given particles distribution in the medium.

    In paper proposes a technique for these parameters influence assessing on the SPH method interpolations accuracy when the hydrostatic problem solving. The analytical functions of the relative error for the density and pressure gradient in the medium are introduced for the accuracy estimate. The relative error functions are dependent on the smoothing factor and the volume factor. Designating a specific interpolation form in SPH method allows the differential form of the relative error functions to the algebraic polynomial form converting. The root of this polynomial gives the smoothing coefficient values that provide the minimum interpolation error for an assigned volume coefficient.

    In this work, the derivation and analysis of density and pressure gradient relative errors functions on a sample of popular nuclei with different smoothing radius was carried out. There is no common the smoothing coefficient value for all the considered kernels that provides the minimum error for both SPH interpolations. The nuclei representatives with different smoothing radius are identified which make it possible the smallest errors of SPH interpolations to provide when the hydrostatic problem solving. As well, certain kernels with different smoothing radius was determined which correct interpolation do not allow provide when the hydrostatic problem solving by the SPH method.

  10. Galochkina T.V., Volpert V.A.
    Mathematical modeling of thrombin propagation during blood coagulation
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 469-486

    In case of vessel wall damage or contact of blood plasma with a foreign surface, the chain of chemical reactions called coagulation cascade is launched that leading to the formation of a fibrin clot. A key enzyme of the coagulation cascade is thrombin, which catalyzes formation of fibrin from fibrinogen. The distribution of thrombin concentration in blood plasma determines spatio-temporal dynamics of clot formation. Contact pathway of blood coagulation triggers the production of thrombin in response to the contact with a negatively charged surface. If the concentration of thrombin generated at this stage is large enough, further production of thrombin takes place due to positive feedback loops of the coagulation cascade. As a result, thrombin propagates in plasma cleaving fibrinogen that results in the clot formation. The concentration profile and the speed of propagation of thrombin are constant and do not depend on the type of the initial activator.

    Such behavior of the coagulation system is well described by the traveling wave solutions in a system of “reaction – diffusion” equations on the concentration of blood factors involved in the coagulation cascade. In this study, we carried out detailed analysis of the mathematical model describing the main reaction of the intrinsic pathway of coagulation cascade.We formulate necessary and sufficient conditions of the existence of the traveling wave solutions. For the considered model the existence of such solutions is equivalent to the existence of the wave solutions in the simplified one-equation model describing the dynamics of thrombin concentration derived under the quasi-stationary approximation.

    Simplified model also allows us to obtain analytical estimate of the thrombin propagation rate in the considered model. The speed of the traveling wave for one equation is estimated using the narrow reaction zone method and piecewise linear approximation. The resulting formulas give a good approximation of the velocity of propagation of thrombin in the simplified, as well as in the original model.

    Views (last year): 10. Citations: 1 (RSCI).
Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"