Результаты поиска по 'characteristics of a random process':
Найдено статей: 11
  1. Antonov I.V., Bruttan I.V.
    Synthesis of the structure of organised systems as central problem of evolutionary cybernetics
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1103-1124

    The article provides approaches to evolutionary modelling of synthesis of organised systems and analyses methodological problems of evolutionary computations of this kind. Based on the analysis of works on evolutionary cybernetics, evolutionary theory, systems theory and synergetics, we conclude that there are open problems in formalising the synthesis of organised systems and modelling their evolution. The article emphasises that the theoretical basis for the practice of evolutionary modelling is the principles of the modern synthetic theory of evolution. Our software project uses a virtual computing environment for machine synthesis of problem solving algorithms. In the process of modelling, we obtained the results on the basis of which we conclude that there are a number of conditions that fundamentally limit the applicability of genetic programming methods in the tasks of synthesis of functional structures. The main limitations are the need for the fitness function to track the step-by-step approach to the solution of the problem and the inapplicability of this approach to the problems of synthesis of hierarchically organised systems. We note that the results obtained in the practice of evolutionary modelling in general for the whole time of its existence, confirm the conclusion the possibilities of genetic programming are fundamentally limited in solving problems of synthesizing the structure of organized systems. As sources of fundamental difficulties for machine synthesis of system structures the article points out the absence of directions for gradient descent in structural synthesis and the absence of regularity of random appearance of new organised structures. The considered problems are relevant for the theory of biological evolution. The article substantiates the statement about the biological specificity of practically possible ways of synthesis of the structure of organised systems. As a theoretical interpretation of the discussed problem, we propose to consider the system-evolutionary concept of P.K.Anokhin. The process of synthesis of functional structures in this context is an adaptive response of organisms to external conditions based on their ability to integrative synthesis of memory, needs and information about current conditions. The results of actual studies are in favour of this interpretation. We note that the physical basis of biological integrativity may be related to the phenomena of non-locality and non-separability characteristic of quantum systems. The problems considered in this paper are closely related to the problem of creating strong artificial intelligence.

  2. Kiselev M.V., Urusov A.M., Ivanitsky A.Y.
    The adaptive Gaussian receptive fields for spiking encoding of numeric variables
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 389-400

    Conversion of numeric data to the spiking form and information losses in this process are serious problems limiting usage of spiking neural networks in applied informational systems. While physical values are represented by numbers, internal representation of information inside spiking neural networks is based on spikes — elementary objects emitted and processed by neurons. This problem is especially hard in the reinforcement learning applications where an agent should learn to behave in the dynamic real world because beside the accuracy of the encoding method, its dynamic characteristics should be considered as well. The encoding algorithm based on the Gaussian receptive fields (GRF) is frequently used. In this method, one numeric variable fed to the network is represented by spike streams emitted by a certain set of network input nodes. The spike frequency in each stream is determined by proximity of the current variable value to the center of the receptive field corresponding to the given input node. In the standard GRF algorithm, the receptive field centers are placed equidistantly. However, it is inefficient in the case of very uneven distribution of the variable encoded. In the present paper, an improved version of this method is proposed which is based on adaptive selection of the Gaussian centers and spike stream frequencies. This improved GRF algorithm is compared with its standard version in terms of amount of information lost in the coding process and of accuracy of classification models built on spike-encoded data. The fraction of information retained in the process of the standard and adaptive GRF encoding is estimated using the direct and reverse encoding procedures applied to a large sample from the triangular probability distribution and counting coinciding bits in the original and restored samples. The comparison based on classification was performed on a task of evaluation of current state in reinforcement learning. For this purpose, the classification models were created by machine learning algorithms of very different nature — nearest neighbors algorithm, random forest and multi-layer perceptron. Superiority of our approach is demonstrated on all these tests.

  3. Abakumov A.I., Izrailsky Y.G.
    The stabilizing role of fish population structure under the influence of fishery and random environment variations
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 609-620

    We study the influence of fishery on a structured fish population under random changes of habitat conditions. The population parameters correspond to dominant pelagic fish species of Far-Eastern seas of the northwestern part of the Pacific Ocean (pollack, herring, sardine). Similar species inhabit various parts of the Word Ocean. The species body size distribution was chosen as a main population feature. This characteristic is easy to measure and adequately defines main specimen qualities such as age, maturity and other morphological and physiological peculiarities. Environmental fluctuations have a great influence on the individuals in early stages of development and have little influence on the vital activity of mature individuals. The fishery revenue was chosen as an optimality criterion. The main control characteristic is fishing effort. We have chosen quadratic dependence of fishing revenue on the fishing effort according to accepted economic ideas stating that the expenses grow with the production volume. The model study shows that the population structure ensures the increased population stability. The growth and drop out of the individuals’ due to natural mortality smoothens the oscillations of population density arising from the strong influence of the fluctuations of environment on young individuals. The smoothing part is played by diffusion component of the growth processes. The fishery in its turn smooths the fluctuations (including random fluctuations) of the environment and has a substantial impact upon the abundance of fry and the subsequent population dynamics. The optimal time-dependent fishing effort strategy was compared to stationary fishing effort strategy. It is shown that in the case of quickly changing habitat conditions and stochastic dynamics of population replenishment there exists a stationary fishing effort having approximately the same efficiency as an optimal time-dependent fishing effort. This means that a constant or weakly varying fishing effort can be very efficient strategy in terms of revenue.

    Views (last year): 6. Citations: 2 (RSCI).
  4. Safaryan O.A.
    Determining the characteristics of a random process by comparing them with values based on models of distribution laws
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1105-1118

    The effectiveness of communication and data transmission systems (CSiPS), which are an integral part of modern systems in almost any field of science and technology, largely depends on the stability of the frequency of the generated signals. The signals generated in the CSiPD can be considered as processes, the frequency of which changes under the influence of a combination of external influences. Changing the frequency of the signals leads to a decrease in the signal-tonoise ratio (SNR) and, consequently, a deterioration in the characteristics of the signal-to-noise ratio, such as the probability of a bit error and bandwidth. It is most convenient to consider the description of such changes in the frequency of signals as random processes, the apparatus of which is widely used in the construction of mathematical models describing the functioning of systems and devices in various fields of science and technology. Moreover, in many cases, the characteristics of a random process, such as the distribution law, mathematical expectation, and variance, may be unknown or known with errors that do not allow us to obtain estimates of the signal parameters that are acceptable in accuracy. The article proposes an algorithm for solving the problem of determining the characteristics of a random process (signal frequency) based on a set of samples of its frequency, allowing to determine the sample mean, sample variance and the distribution law of frequency deviations in the general population. The basis of this algorithm is the comparison of the values of the observed random process measured over a certain time interval with a set of the same number of random values formed on the basis of model distribution laws. Distribution laws based on mathematical models of these systems and devices or corresponding to similar systems and devices can be considered as model distribution laws. When forming a set of random values for the accepted model distribution law, the sample mean value and variance obtained from the measurement results of the observed random process are used as mathematical expectation and variance. The feature of the algorithm is to compare the measured values of the observed random process ordered in ascending or descending order and the generated sets of values in accordance with the accepted models of distribution laws. The results of mathematical modeling illustrating the application of this algorithm are presented.

  5. Lyubushin A.A., Farkov Y.A.
    Synchronous components of financial time series
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655

    The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.

    Views (last year): 12. Citations: 2 (RSCI).
  6. Kurushina S.E., Fedorova E.A., Gurovskaia I.A.
    Technique for analyzing noise-induced phenomena in two-component stochastic systems of reaction – diffusion type with power nonlinearity
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291

    The paper constructs and studies a generalized model describing two-component systems of reaction – diffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reaction – diffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.

  7. Pavlov E.A., Osipov G.V.
    Synchronization and chaos in networks of coupled maps in application to modeling of cardiac dynamics
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 439-453

    The dynamics of coupled elements’ ensembles are investigated in the context of description of spatio-temporal processes in the myocardium. Basic element is map-based model constructed by simplification and reduction of Luo-Rudy model. In particular, capabilities of the model in replication of different regimes of cardiac activity are shown, including excitable and oscillatory regimes. The dynamics of 1D and 2D lattices of coupled oscillatory elements with a random distribution of individual frequencies are considered. Effects of cluster synchronization and transition to global synchronization by increasing of coupling strength are discussed. Impulse propagation in the chain of excitable cells has been observed. Analysis of 2D lattice of excitable elements with target and spiral waves have been made. The characteristics of the spiral wave has been analyzed in depending on the individual parameters of the map and coupling strength between elements of the lattice. A study of mixed ensembles consisting of excitable and oscillatory elements with a gradient changing of the properties have been made, including the task for description of normal and pathological activity of the sinoatrial node.

    Citations: 3 (RSCI).
  8. Beloborodova E.I., Tamm M.V.
    On some properties of short-wave statistics of FOREX time series
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 657-669

    Financial mathematics is one of the most natural applications for the statistical analysis of time series. Financial time series reflect simultaneous activity of a large number of different economic agents. Consequently, one expects that methods of statistical physics and the theory of random processes can be applied to them.

    In this paper, we provide a statistical analysis of time series of the FOREX currency market. Of particular interest is the comparison of the time series behavior depending on the way time is measured: physical time versus trading time measured in the number of elementary price changes (ticks). The experimentally observed statistics of the time series under consideration (euro–dollar for the first half of 2007 and for 2009 and British pound – dollar for 2007) radically differs depending on the choice of the method of time measurement. When measuring time in ticks, the distribution of price increments can be well described by the normal distribution already on a scale of the order of ten ticks. At the same time, when price increments are measured in real physical time, the distribution of increments continues to differ radically from the normal up to scales of the order of minutes and even hours.

    To explain this phenomenon, we investigate the statistical properties of elementary increments in price and time. In particular, we show that the distribution of time between ticks for all three time series has a long (1-2 orders of magnitude) power-law tails with exponential cutoff at large times. We obtained approximate expressions for the distributions of waiting times for all three cases. Other statistical characteristics of the time series (the distribution of elementary price changes, pair correlation functions for price increments and for waiting times) demonstrate fairly simple behavior. Thus, it is the anomalously wide distribution of the waiting times that plays the most important role in the deviation of the distribution of increments from the normal. As a result, we discuss the possibility of applying a continuous time random walk (CTRW) model to describe the FOREX time series.

    Views (last year): 10.
  9. Orlova I.N., Golubtsova A.N., Orlov V.A., Orlov N.V.
    Research on the achievability of a goal in a medical quest
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1149-1179

    The work presents an experimental study of the tree structure that occurs during a medical examination. At each meeting with a medical specialist, the patient receives a certain number of areas for consulting other specialists or for tests. A tree of directions arises, each branch of which the patient should pass. Depending on the branching of the tree, it can be as final — and in this case the examination can be completed — and endless when the patient’s goal cannot be achieved. In the work both experimentally and theoretically studied the critical properties of the transition of the system from the forest of the final trees to the forest endless, depending on the probabilistic characteristics of the tree.

    For the description, a model is proposed in which a discrete function of the probability of the number of branches on the node repeats the dynamics of a continuous gaussian distribution. The characteristics of the distribution of the Gauss (mathematical expectation of $x_0$, the average quadratic deviation of $\sigma$) are model parameters. In the selected setting, the task refers to the problems of branching random processes (BRP) in the heterogeneous model of Galton – Watson.

    Experimental study is carried out by numerical modeling on the final grilles. A phase diagram was built, the boundaries of areas of various phases are determined. A comparison was made with the phase diagram obtained from theoretical criteria for macrosystems, and an adequate correspondence was established. It is shown that on the final grilles the transition is blurry.

    The description of the blurry phase transition was carried out using two approaches. In the first, standard approach, the transition is described using the so-called inclusion function, which makes the meaning of the share of one of the phases in the general set. It was established that such an approach in this system is ineffective, since the found position of the conditional boundary of the blurred transition is determined only by the size of the chosen experimental lattice and does not bear objective meaning.

    The second, original approach is proposed, based on the introduction of an parameter of order equal to the reverse average tree height, and the analysis of its behavior. It was established that the dynamics of such an order parameter in the $\sigma = \text{const}$ section with very small differences has the type of distribution of Fermi – Dirac ($\sigma$ performs the same function as the temperature for the distribution of Fermi – Dirac, $x_0$ — energy function). An empirical expression has been selected for the order parameter, an analogue of the chemical potential is introduced and calculated, which makes sense of the characteristic scale of the order parameter — that is, the values of $x_0$, in which the order can be considered a disorder. This criterion is the basis for determining the boundary of the conditional transition in this approach. It was established that this boundary corresponds to the average height of a tree equal to two generations. Based on the found properties, recommendations for medical institutions are proposed to control the provision of limb of the path of patients.

    The model discussed and its description using conditionally-infinite trees have applications to many hierarchical systems. These systems include: internet routing networks, bureaucratic networks, trade and logistics networks, citation networks, game strategies, population dynamics problems, and others.

  10. Lukyantsev D.S., Afanasiev N.T., Tanaev A.B., Chudaev S.O.
    Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443

    Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"