Результаты поиска по 'convection':
Найдено статей: 41
  1. Borisov A.V., Krasnobaeva L.A., Shapovalov A.V.
    Influence of diffusion and convection on the chemostat dynamics
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 121-129

    Population dynamics is considered in a modified chemostat model including diffusion, chemotaxis, and nonlocal competitive losses. To account for influence of the external environment on the population of the ecosystem, a random parameter is included into the model equations. Computer simulations reveal three dynamic modes depending on system parameters: the transition from initial state to a spatially homogeneous steady state, to a spatially inhomogeneous distribution of population density, and elimination of population density.

    Views (last year): 1.
  2. Trifonova T.A., Sheremet M.A.
    Comparative analysis of Darcy and Brinkman models at studying of transient conjugate natural convection in a porous cylindrical cavity
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 623-634

    Comparative analysis of two models of porous medium (Dacry and Brinkman) on an example of mathematical simulation of transient natural convection in a porous vertical cylindrical cavity with heat-conducting shell of finite thickness in conditions of convective cooling from an environment has been carried out. The boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function, vorticity and temperature has been solved by implicit finite difference method. The presented verification results validate used numerical approach and also confirm that the solution is not dependent on the mesh size. Features of the conjugate heat transfer problems with considered models of porous medium have been determined.

    Views (last year): 1. Citations: 4 (RSCI).
  3. Bratsun D.A., Zyuzgin A.V.
    Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part II. Control of fluid equilibrium
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 369-389

    The problem of active control of the mechanical equilibrium of an inhomogeneously heated fluid in a thermosyphon is studied theoretically and experimentally. The control is performed by using a feedback subsystem which inhibits convection by changing the orientation of thermosyphon in space. It is shown that excess feedback leads to the excitation of oscillations which are related to a delay in the controller work. In the presense of noise, the oscillations arise even when deterministic description predicts stationary behaviour. The experimental data and theory are in good agreement.

    Views (last year): 1. Citations: 6 (RSCI).
  4. Sukhinov A.I., Chistyakov A.E., Semenyakina A.A., Nikitina A.V.
    Numerical modeling of ecologic situation of the Azov Sea with using schemes of increased order of accuracy on multiprocessor computer system
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 151-168

    The article covered results of three-dimensional modeling of ecologic situation of shallow water on the example of the Azov Sea with using schemes of increased order of accuracy on multiprocessor computer system of Southern Federal University. Discrete analogs of convective and diffusive transfer operators of the fourth order of accuracy in the case of partial occupancy of cells were constructed and studied. The developed scheme of the high (fourth) order of accuracy were used for solving problems of aquatic ecology and modeling spatial distribution of polluting nutrients, which caused growth of phytoplankton, many species of which are toxic and harmful. The use of schemes of the high order of accuracy are improved the quality of input data and decreased the error in solutions of model tasks of aquatic ecology. Numerical experiments were conducted for the problem of transportation of substances on the basis of the schemes of the second and fourth orders of accuracy. They’re showed that the accuracy was increased in 48.7 times for diffusion-convection problem. The mathematical algorithm was proposed and numerically implemented, which designed to restore the bottom topography of shallow water on the basis of hydrographic data (water depth at individual points or contour level). The map of bottom relief of the Azov Sea was generated with using this algorithm. It’s used to build fields of currents calculated on the basis of hydrodynamic model. The fields of water flow currents were used as input data of the aquatic ecology models. The library of double-layered iterative methods was developed for solving of nine-diagonal difference equations. It occurs in discretization of model tasks of challenges of pollutants concentration, plankton and fish on multiprocessor computer system. It improved the precision of the calculated data and gave the possibility to obtain operational forecasts of changes in ecologic situation of shallow water in short time intervals.

    Views (last year): 4. Citations: 31 (RSCI).
  5. Kudrov A.I., Sheremet M.A.
    Numerical simulation of corium cooling driven by natural convection in case of in-vessel retention and time-dependent heat generation
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 807-822

    Represented study considers numerical simulation of corium cooling driven by natural convection within a horizontal hemicylindrical cavity, boundaries of which are assumed isothermal. Corium is a melt of ceramic fuel of a nuclear reactor and oxides of construction materials.

    Corium cooling is a process occurring during severe accident associated with core melt. According to invessel retention conception, the accident may be restrained and localized, if the corium is contained within the vessel, only if it is cooled externally. This conception has a clear advantage over the melt trap, it can be implemented at already operating nuclear power plants. Thereby proper numerical analysis of the corium cooling has become such a relevant area of studies.

    In the research, we assume the corium is contained within a horizontal semitube. The corium initially has temperature of the walls. In spite of reactor shutdown, the corium still generates heat owing to radioactive decays, and the amount of heat released decreases with time accordingly to Way–Wigner formula. The system of equations in Boussinesq approximation including momentum equation, continuity equation and energy equation, describes the natural convection within the cavity. Convective flows are taken to be laminar and two-dimensional.

    The boundary-value problem of mathematical physics is formulated using the non-dimensional nonprimitive variables «stream function – vorticity». The obtained differential equations are solved numerically using the finite difference method and locally one-dimensional Samarskii scheme for the equations of parabolic type.

    As a result of the present research, we have obtained the time behavior of mean Nusselt number at top and bottom walls for Rayleigh number ranged from 103 to 106. These mentioned dependences have been analyzed for various dimensionless operation periods before the accident. Investigations have been performed using streamlines and isotherms as well as time dependences for convective flow and heat transfer rates.

  6. Syzranova N.G., Andruschenko V.A.
    Numerical modeling of physical processes leading to the destruction of meteoroids in the Earth’s atmosphere
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 835-851

    Within the framework of the actual problem of comet-asteroid danger, the physical processes causing the destruction and fragmentation of meteor bodies in the Earth’s atmosphere are numerically investigated. Based on the developed physicalmathematical models that determines the movements of space objects of natural origin in the atmosphere and their interaction with it, the fall of three, one of the largest and by some parameters unusual bolides in the history of meteoritics, are considered: Tunguska, Vitim and Chelyabinsk. Their singularity lies in the absence of any material meteorite remains and craters in the area of the alleged crash site for the first two bodies and the non-detection, as it is assumed, of the main mother body for the third body (due to the too small amount of mass of the fallen fragments compared to the estimated mass). The effect of aerodynamic loads and heat flows on these bodies are studied, which leads to intensive surface mass loss and possible mechanical destruction. The velocities of the studied celestial bodies and the change in their masses are determined from the modernized system of equations of the theory of meteoric physics. An important factor that is taken into account here is the variability of the meteorite mass entrainment parameter under the action of heat fluxes (radiation and convective) along the flight path. The process of fragmentation of meteoroids in this paper is considered within the framework of a progressive crushing model based on the statistical theory of strength, taking into account the influence of the scale factor on the ultimate strength of objects. The phenomena and effects arising at various kinematic and physical parameters of each of these bodies are revealed. In particular, the change in the ballistics of their flight in the denser layers of the atmosphere, consisting in the transition from the fall mode to the ascent mode. At the same time, the following scenarios of the event can be realized: 1) the return of the body back to outer space at its residual velocity greater than the second cosmic one; 2) the transition of the body to the orbit of the Earth satellite at a residual velocity greater than the first cosmic one; 3) at lower values of the residual velocity of the body, its return after some time to the fall mode and falling out at a considerable distance from the intended crash site. It is the implementation of one of these three scenarios of the event that explains, for example, the absence of material traces, including craters, in the case of the Tunguska bolide in the vicinity of the forest collapse. Assumptions about the possibility of such scenarios have been made earlier by other authors, and in this paper their implementation is confirmed by the results of numerical calculations.

  7. Kolobov A.V., Polezhaev A.A.
    Influence of random malignant cell motility on growing tumor front stability
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 225-232

    Chemotaxis plays an important role in morphogenesis and processes of structure formation in nature. Both unicellular organisms and single cells in tissue demonstrate this property. In vitro experiments show that many types of transformed cell, especially metastatic competent, are capable for directed motion in response usually to chemical signal. There is a number of theoretical papers on mathematical modeling of tumour growth and invasion using Keller-Segel model for the chemotactic motility of cancer cells. One of the crucial questions for using the chemotactic term in modelling of tumour growth is a lack of reliable quantitative estimation of its parameters. The 2-D mathematical model of tumour growth and invasion, which takes into account only random cell motility and convective fluxes in compact tissue, has showed that due to competitive mechanism tumour can grow toward sources of nutrients in absence of chemotactic cell motility.

    Views (last year): 5. Citations: 7 (RSCI).
  8. A mathematical model of tumor growth in tissue taking into account angiogenesis and antiangiogenic therapy is developed. In the model the convective flows in tissue are considered as well as individual motility of tumor cells. It is considered that a cell starts to migrate if the nutrient concentration falls lower than the critical level and returns into proliferation in the region with high nutrient concentration. Malignant cells in the state of metabolic stress produce vascular endothelial growth factor (VEGF), stimulating tumor angiogenesis, which increases the nutrient supply. In this work an antiangiogenic drug which bounds irreversibly to VEGF, converting it to inactive form, is modeled. Numerical analysis of influence of antiangiogenic drug concentration and efficiency on tumor rate of growth and structure is performed. It is shown that antiangiogenic therapy can decrease the growth of low-invasive tumor, but is not able to stop it completely.

    Views (last year): 4. Citations: 1 (RSCI).
  9. Bratsun D.A., Kostarev K.V.
    Mathematical modeling of phase transitions during collective interaction of agents in a common thermal field
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 1005-1028

    Collective behavior can serve as a mechanism of thermoregulation and play a key role in the joint survival of a group of organisms. In higher animals, such phenomena are usually the subject of study of biology since sudden transitions to collective behavior are difficult to differentiate from the psychological and social adaptation of animals. However, in this paper, we indicate several important examples when a flock of higher animals demonstrates phase transitions similar to known phenomena in liquids and gases. This issue can also be studied experimentally within the framework of synthetic systems consisting of self-propelled robots that act according to a certain given algorithm. Generalizing both of these cases, we consider the problem of phase transitions in a dense group of interacting selfpropelled agents. Within the framework of microscopic theory, we propose a mathematical model of the phenomenon, in which agents are represented as bodies interacting with each other in accordance with an effective potential of a special type, expressing the desire of agents to move in the direction of the gradient of the joint thermal field. We show that the number of agents in the group, the group power, is the control parameter of the problem. A discrete model with individual dynamics of agents reproduces most of the phenomena observed both in natural flocks of higher animals engaged in collective thermoregulation and in synthetic complex systems. A first-order phase transition is observed, which symbolizes a change in the aggregate state in a group of agents. One observes the self-assembly of the initial weakly structured mass of agents into dense quasi-crystalline structures. We demonstrate also that, with an increase in the group power, a second-order phase transition in the form of thermal convection can occur. It manifests in a sudden liquefaction of the group and a transition to vortex motion, which ensures more efficient energy consumption in the case of a synthetic system of interacting robots and the collective survival of all individuals in the case of natural animal flocks.With an increase in the group power, secondary bifurcations occur, the vortex structure in agent medium becomes more complicated.

  10. Tokarev A.A., Butylin A.A., Ataullakhanov F.I.
    Platelet transport and adhesion in shear blood flow: the role of erythrocytes
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 185-200

    Hemostatic system serves the organism for urgent repairs of damaged blood vessel walls. Its main components – platelets, the smallest blood cells, – are constantly contained in blood and quickly adhere to the site of injury. Platelet migration across blood flow and their hit with the wall are governed by blood flow conditions and, in particular, by the physical presence of other blood cells – erythrocytes. In this review we consider the main regularities of this influence, available mathematical models of platelet migration across blood flow and adhesion based on "convection-diffusion" PDEs, and discuss recent advances in this field. Understanding of the mechanisms of these processes is necessary for building of adequate mathematical models of hemostatic system functioning in blood flow in normal and pathological conditions.

    Views (last year): 3. Citations: 8 (RSCI).
Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"