Результаты поиска по 'dependability':
Найдено статей: 308
  1. Naumov I.V., Otmakhova Y.S., Krasnykh S.S.
    Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648

    The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.

  2. Varshavskiy A.E.
    A model for analyzing income inequality based on a finite functional sequence (adequacy and application problems)
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 675-689

    The paper considers the adequacy of the model developed earlier by the author for the analysis of income inequality and based on an empirically confirmed hypothesis that the relative (to the income of the richest group) income values of 20% population groups in total income can be represented as a finite functional sequence, each member of which depends on one parameter — a specially defined indicator of inequality. It is shown that in addition to the existing methods of inequality analysis, the model makes it possible to estimate with the help of analytical expressions the income shares of 20%, 10% and smaller groups of the population for different levels of inequality, as well as to identify how they change with the growth of inequality, to estimate the level of inequality for known ratios between the incomes of different groups of the population, etc.

    The paper provides a more detailed confirmation of the proposed model adequacy in comparison with the previously obtained results of statistical analysis of empirical data on the distribution of income between the 20% and 10% population groups. It is based on the analysis of certain ratios between the values of quintiles and deciles according to the proposed model. The verification of these ratios was carried out using a set of data for a large number of countries and the estimates obtained confirm the sufficiently high accuracy of the model.

    Data are presented that confirm the possibility of using the model to analyze the dependence of income distribution by population groups on the level of inequality, as well as to estimate the inequality indicator for income ratios between different groups, including variants when the income of the richest 20% is equal to the income of the poor 60 %, income of the middle class 40% or income of the rest 80% of the population, as well as when the income of the richest 10% is equal to the income of the poor 40 %, 50% or 60%, to the income of various middle class groups, etc., as well as for cases, when the distribution of income obeys harmonic proportions and when the quintiles and deciles corresponding to the middle class reach a maximum. It is shown that the income shares of the richest middle class groups are relatively stable and have a maximum at certain levels of inequality.

    The results obtained with the help of the model can be used to determine the standards for developing a policy of gradually increasing the level of progressive taxation in order to move to the level of inequality typical of countries with social oriented economy.

  3. Mikishanina E.A., Platonov P.S.
    Motion control by a highly maneuverable mobile robot in the task of following an object
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1301-1321

    This article is devoted to the development of an algorithm for trajectory control of a highly maneuverable four-wheeled robotic transport platform equipped with mecanum wheels, in order to organize its movement behind some moving object. The calculation of the kinematic ratios of this platform in a fixed coordinate system is presented, which is necessary to determine the angular velocities of the robot wheels depending on a given velocity vector. An algorithm has been developed for the robot to follow a mobile object on a plane without obstacles based on the use of a modified chase method using different types of control functions. The chase method consists in the fact that the velocity vector of the geometric center of the platform is co-directed with the vector connecting the geometric center of the platform and the moving object. Two types of control functions are implemented: piecewise and constant. The piecewise function means control with switching modes depending on the distance from the robot to the target. The main feature of the piecewise function is a smooth change in the robot’s speed. Also, the control functions are divided according to the nature of behavior when the robot approaches the target. When using one of the piecewise functions, the robot’s movement slows down when a certain distance between the robot and the target is reached and stops completely at a critical distance. Another type of behavior when approaching the target is to change the direction of the velocity vector to the opposite, if the distance between the platform and the object is the minimum allowable, which avoids collisions when the target moves in the direction of the robot. This type of behavior when approaching the goal is implemented for a piecewise and constant function. Numerical simulation of the robot control algorithm for various control functions in the task of chasing a target, where the target moves in a circle, is performed. The pseudocode of the control algorithm and control functions is presented. Graphs of the robot’s trajectory when moving behind the target, speed changes, changes in the angular velocities of the wheels from time to time for various control functions are shown.

  4. Panteleev M.A., Bershadsky E.S., Shibeko A.M., Nechipurenko D.Y.
    Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 975-995

    Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.

  5. Marchanko L.N., Kasianok Y.A., Gaishun V.E., Bruttan I.V.
    Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252

    The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.

  6. Saade M.G.
    Modeling the impact of epidemic spread and lockdown on economy
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 339-363

    Epidemics severely destabilize economies by reducing productivity, weakening consumer spending, and overwhelming public infrastructure, often culminating in economic recessions. The COVID-19 pandemic underscored the critical role of nonpharmaceutical interventions, such as lockdowns, in containing infectious disease transmission. This study investigates how the progression of epidemics and the implementation of lockdown policies shape the economic well-being of populations. By integrating compartmental ordinary differential equation (ODE) models, the research analyzes the interplay between epidemic dynamics and economic outcomes, particularly focusing on how varying lockdown intensities influence both disease spread and population wealth. Findings reveal that epidemics inflict significant economic damage, but timely and stringent lockdowns can mitigate healthcare system overload by sharply reducing infection peaks and delaying the epidemic’s trajectory. However, carefully timed lockdown relaxation is equally vital to prevent resurgent outbreaks. The study identifies key epidemiological thresholds—such as transmission rates, recovery rates, and the basic reproduction number $(\mathfrak{R}0)$ — that determine the effectiveness of lockdowns. Analytically, it pinpoints the optimal proportion of isolated individuals required to minimize total infections in scenarios where permanent immunity is assumed. Economically, the analysis quantifies lockdown impacts by tracking population wealth, demonstrating that economic outcomes depend heavily on the fraction of isolated individuals who remain economically productive. Higher proportions of productive individuals during lockdowns correlate with better wealth retention, even under fixed epidemic conditions. These insights equip policymakers with actionable frameworks to design balanced lockdown strategies that curb disease spread while safeguarding economic stability during future health crises.

  7. Kuznetsov M.B., Kolobov A.V.
    Optimization of proton therapy with radiosensitizing nanoparticles and antiangiogenic therapy via mathematical modeling
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 697-715

    Optimization of antitumor radiotherapy represents an urgent issue, as approximately half of the patients diagnosed with cancer undergo radiotherapy during their treatment. Proton therapy is potentially more efficient than traditional X-ray radiotherapy due to fundamental differences in physics of dose deposition, leading to better targeting of tumors and less collateral damage to healthy tissue. There is increasing interest in the use of non-radioactive radiosensitizing tumor-specific nanoparticles the use of which can boost the performance of proton therapy. Such nanoparticles are small volumes of a sensitizer, such as boron-10 or various metal oxides, enclosed in a polymer layer containing tumor-specific antibodies, which allows for their targeted delivery to malignant cells. Furthermore, a combination of proton therapy with antiangiogenic therapy that normalizes tumor-associated microvasculature may yield further synergistic increase in overall treatment efficacy.

    We have developed a spatially distributed mathematical model simulating the growth of a non-invasive tumor undergoing treatment by fractionated proton therapy with nanosensitizers and antiangiogenic therapy. The modeling results suggest that the most effective way to combine these treatment modalities should strongly depend on the tumor cells’ proliferation rate and their intrinsic radiosensitivity. Namely, a combination of antiangiogenic therapy with proton therapy, regardless of whether radiosensitizing nanoparticles are used, benefits treatment efficacy of rapidly growing tumors as well as radioresistant tumors with moderate growth rate. In these cases, administration of proton therapy simultaneously with antiangiogenic drugs after the initial single injection of nanosensitizers is the most effective option among those analyzed. Conversely, for slowly growing tumors, maximization of the number of nanosensitizer injections without antiangiogenic therapy proves to be a more efficient option, with enhancement in treatment efficacy growing with the increase of tumor radiosensitivity. However, the results also show that the overall efficacy of proton therapy is likely to increase only modestly with the addition of nanosensitizers and antiangiogenic drugs.

  8. Revutskaya O.L., Neverova G.P., Frisman E.Y.
    A minimal model of density-dependent population dynamics incorporating sex structure: simulation and application
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 941-961

    This study proposes and analyzes a discrete-time mathematical model of population dynamics with seasonal reproduction, taking into account the density-dependent regulation and sex structure. In the model, population birth rate depends on the number of females, while density is regulated through juvenile survival, which decreases exponentially with increasing total population size. Analytical and numerical investigations of the model demonstrate that when more than half of both females and males survive, the population exhibits stable dynamics even at relatively high birth rates. Oscillations arise when the limitation of female survival exceeds that of male survival. Increasing the intensity of male survival limitation can stabilize population dynamics, an effect particularly evident when the proportion of female offspring is low. Depending on parameter values, the model exhibits stable, periodic, or irregular dynamics, including multistability, where changes in current population size driven by external factors can shift the system between coexisting dynamic modes. To apply the model to real populations, we propose an approach for estimating demographic parameters based on total abundance data. The key idea is to reduce the two-component discrete model with sex structure to a delay equation dependent only on total population size. In this formulation, the initial sex structure is expressed through total abundance and depends on demographic parameters. The resulting one-dimensional equation was applied to describe and estimate demographic characteristics of ungulate populations in the Jewish Autonomous Region. The delay equation provides a good fit to the observed dynamics of ungulate populations, capturing long-term trends in abundance. Point estimates of parameters fall within biologically meaningful ranges and produce population dynamics consistent with field observations. For moose, roe deer, and musk deer, the model suggests predominantly stable dynamics, while annual fluctuations are primarily driven by external factors and represent deviations from equilibrium. Overall, these estimates enable the analysis of structured population dynamics alongside short-term forecasting based on total abundance data.

  9. Khoraskina Y.S., Komarov A.S., Bezrukova M.G., Zhiyanski M.K.
    Modeling of calcium dynamics in soil organic layers
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110

    Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.

    Views (last year): 1.
  10. Platonov D.V., Minakov A.V., Dekterev A.A., Sentyabov A.V.
    Numerical modeling of flows with flow swirling
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 635-648

    This paper is devoted to investigation of the swirl flows. Such flows are widely used in various industrial processes. Swirl flows can be accompanied by time-dependent effects, for example, precession of the vortex core. In turn, the large-scale fluctuations due to the precession of the vortex can cause damage of structures and reduce of equipment reliability. Thus, for engineering calculations approaches that sufficiently well described such flows are required. This paper presents the technique of swirl flows calculation, tested for CFD packages Fluent and SigmaFlow. A numerical simulation of several swirl flow test problems was carried out. Obtained results are compared with each other and with the experimental data.

    Views (last year): 4. Citations: 2 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"