Результаты поиска по 'high performance computing':
Найдено статей: 47
  1. Mikhailenko S.A., Sheremet M.A.
    Simulation of convective-radiative heat transfer in a differentially heated rotating cavity
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 195-207

    Mathematical simulation of unsteady natural convection and thermal surface radiation within a rotating square enclosure was performed. The considered domain of interest had two isothermal opposite walls subjected to constant low and high temperatures, while other walls are adiabatic. The walls were diffuse and gray. The considered cavity rotated with constant angular velocity relative to the axis that was perpendicular to the cavity and crossed the cavity in the center. Mathematical model, formulated in dimensionless transformed variables “stream function – vorticity” using the Boussinesq approximation and diathermic approach for the medium, was performed numerically using the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. Radiative heat transfer was analyzed using the net-radiation method in Poljak approach. The developed computational code was tested using the grid independence analysis and experimental and numerical results for the model problem.

    Numerical analysis of unsteady natural convection and thermal surface radiation within the rotating enclosure was performed for the following parameters: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. All distributions were obtained for the twentieth complete revolution when one can find the periodic behavior of flow and heat transfer. As a result we revealed that at low angular velocity the convective flow can intensify but the following growth of angular velocity leads to suppression of the convective flow. The radiative Nusselt number changes weakly with the Taylor number.

    Views (last year): 20.
  2. Nefedova O.A., Spevak L.P., Kazakov A.L., Lee M.G.
    Solution to a two-dimensional nonlinear heat equation using null field method
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467

    The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.

  3. Chetyrbotsky A.N., Chetyrbotskii V.A.
    Model of mantle convection in a zone of a complete subduction cycle
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1385-1398

    A 2D numerical model of the immersion of a cold oceanic plate into the thickness of the Earth’s upper mantle has been developed, where the stage of the initial immersion of the plate is preceded by the establishment of a regime of thermogravitational convection of the mantle substance. The model approximation of the mantle is a two-dimensional image of an incompressible Newtonian quasi-liquid in a Cartesian coordinate system, where, due to the high viscosity of the medium, the equations of mantle convection are accepted in the Stokes approximation. It is assumed that seawater that has leaked here enters the first horizons of the mantle together with the plate. With depth, the increase in pressure and temperature leads to certain losses of its light fractions and fluids, losses of water and gases of water-containing minerals of the plate, restructuring of their crystal lattice and, as a consequence, phase transformations. These losses cause an increase in the plate density and an uneven distribution of stresses along the plate (the initial sections of the plate are denser), which subsequently, together with the effect of mantle currents on the plate, causes its fragmentation. The state of mantle convection is considered when the plate and its individual fragments have descended to the bottom of the upper mantle. Computational schemes for solving the model equations have been developed. Mantle convection calculations are performed in terms of the Stokes approximation for vorticity and the stream function, and SPH is used to calculate the state and subsidence of the plate. A number of computational experiments have been performed. It is shown that fragmentation of the plate occurs due to the effect of mantle convection on the plate and the development of inhomogeneous stress fields along the plate. Following the equations of the model, the time of the final stage of subduction is estimated, i.e. the time of the entire oceanic plate reaching the bottom of the upper mantle. In geodynamics, this process is determined by the collision of plates that immediately follows subduction and is usually considered as the final stage of the Wilson cycle (i. e., the cycle of development of folded belts).

  4. Shushko N.I., Barashov E.B., Krasotkin S.A., Lemtuzhnikova D.V.
    Solving traveling salesman problem via clustering and a new algorithm for merging tours
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 45-58

    Traditional methods for solving the traveling salesman problem are not effective for high-dimensional problems due to their high computational complexity. One of the most effective ways to solve this problem is the decomposition approach, which includes three main stages: clustering vertices, solving subproblems within each cluster and then merging the obtained solutions into a final solution. This article focuses on the third stage — merging cycles of solving subproblems — since this stage is not always given sufficient attention, which leads to less accurate final solutions of the problem. The paper proposes a new modified Sigal algorithm for merging cycles. To evaluate its effectiveness, it is compared with two algorithms for merging cycles — the method of connecting midpoints of edges and an algorithm based on closeness of cluster centroids. The dependence of quality of solving subproblems on algorithms used for merging cycles is investigated. Sigal’s modified algorithm performs pairwise clustering and minimizes total distance. The centroid method focuses on connecting clusters based on closeness of centroids, and an algorithm using mid-points estimates the distance between mid-points of edges. Two types of clustering — k-means and affinity propagation — were also considered. Numerical experiments were performed using the TSPLIB dataset with different numbers of cities and topologies to test effectiveness of proposed algorithm. The study analyzes errors caused by the order in which clusters were merged, the quality of solving subtasks and number of clusters. Experiments show that the modified Sigal algorithm has the smallest median final distance and the most stable results compared to other methods. Results indicate that the quality of the final solution obtained using the modified Sigal algorithm is more stable depending on the sequence of merging clusters. Improving the quality of solving subproblems usually results in linear improvement of the final solution, but the pooling algorithm rarely affects the degree of this improvement.

  5. Dzhoraev A.R.
    GPU-accelerated hybrid systems for high-performance computing in bio-informatics
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 163-167

    Modern GPUs are massively-parallel processors, offering substantial amount of computational power in energy-efficient package. We discuss the benefits of utilizing this computing power for modeling problems in bio-informatics, such as molecular dynamics, quantum chemistry and sequence analysis.

    Views (last year): 2. Citations: 6 (RSCI).
  6. Konyukhov A.V., Rostilov T.A.
    Numerical simulation of converging spherical shock waves with symmetry violation
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 59-71

    The study of the development of π-periodic perturbations of a converging spherical shock wave leading to cumulation limitation is performed. The study is based on 3D hydrodynamic calculations with the Carnahan – Starling equation of state for hard sphere fluid. The method of solving the Euler equations on moving (compressing) grids allows one to trace the evolution of the converging shock wave front with high accuracy in a wide range of its radius. The compression rate of the computational grid is adapted to the motion of the shock wave front, while the motion of the boundaries of the computational domain satisfy the condition of its supersonic velocity relative to the medium. This leads to the fact that the solution is determined only by the initial data at the grid compression stage. The second order TVD scheme is used to reconstruct the vector of conservative variables at the boundaries of the computational cells in combination with the Rusanov scheme for calculating the numerical vector of flows. The choice is due to a strong tendency for the manifestation of carbuncle-type numerical instability in the calculations, which is known for other classes of flows. In the three-dimensional case of the observed force, the carbuncle effect was obtained for the first time, which is explained by the specific nature of the flow: the concavity of the shock wave front in the direction of motion, the unlimited (in the symmetric case) growth of the Mach number, and the stationarity of the front on the computational grid. The applied numerical method made it possible to study the detailed flow pattern on the scale of cumulation termination, which is impossible within the framework of the Whitham method of geometric shock wave dynamics, which was previously used to calculate converging shock waves. The study showed that the limitation of cumulation is associated with the transition from the Mach interaction of converging shock wave segments to a regular one due to the progressive increase in the ratio of the azimuthal velocity at the shock wave front to the radial velocity with a decrease in its radius. It was found that this ratio is represented as a product of a limited oscillating function of the radius and a power function of the radius with an exponent depending on the initial packing density in the hard sphere model. It is shown that increasing the packing density parameter in the hard sphere model leads to a significant increase in the pressures achieved in a shock wave with broken symmetry. For the first time in the calculation, it is shown that at the scale of cumulation termination, the flow is accompanied by the formation of high-energy vortices, which involve the substance that has undergone the greatest shock-wave compression. Influencing heat and mass transfer in the region of greatest compression, this circumstance is important for current practical applications of converging shock waves for the purpose of initiating reactions (detonation, phase transitions, controlled thermonuclear fusion).

  7. Geller O.V., Vasilev M.O., Kholodov Y.A.
    Building a high-performance computing system for simulation of gas dynamics
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 309-317

    The aim of research is to develop software system for solving gas dynamic problem in multiply connected integration domains of regular shape by high-performance computing system. Comparison of the various technologies of parallel computing has been done. The program complex is implemented using multithreaded parallel systems to organize both multi-core and massively parallel calculation. The comparison of numerical results with known model problems solutions has been done. Research of performance of different computing platforms has been done.

    Views (last year): 5. Citations: 6 (RSCI).
  8. Ustinin D.M., Kovalenko I.B., Riznichenko G.Yu., Rubin A.B.
    Combination of different simulation techniques in the complex model of photosynthetic membrane
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 65-81

    Complex geometric organization of subcellular structures such as photosynthetic or mitochondrial membranes determines mechanism of electron and proton transfer processes. We propose new approach in modeling processes, where geometric shape of membranes is accurately taken into account. Different stages of charge transfer process are simulated using different approaches, which are integrated into a combined model. We implemented this model as software which utilizes parallel computations on high-performance clusters and GPUs for better performance.

    Views (last year): 5. Citations: 2 (RSCI).
  9. Bogdanov A.V., Degtyarev A.B., Khramushin V.N.
    High performance computations on hybrid systems: will "grand challenges" be solved?
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 429-437

    Based on CFD computations we provide the analysis of the possibilities for using modern hybrid distributed computational environments for large complex system simulation. We argue that only multilevel approach supported by new mathematical models of transport properties, dynamical representation of the problem with transport and internal processes separated, and modern paradigm of programming, taking into account specific properties of heterogeneous system, will make it possible to scale the problem effectively.

    Views (last year): 7. Citations: 8 (RSCI).
  10. Petrov I.B., Muratov M.V., Favorskaya A.V., Biryukov V.A., Sannikov A.V.
    Numerical modeling of straight 3D exploration seismology problems with use of grid-characteristic method on unstructured tetrahedral meshes
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 875-887

    The article contains results of 3D modeling of seismic responses from fractured geological formations with use of grid-characteristic method on unstructured tetrahedral meshes with use of high-performance computation systems. The method being used is the most suitable for modeling of heterogenic domains exploration seismology problems. The use of unstructured tetrahedral meshes allows modeling of different geometry and space orientation fractures. That gives us possibility to solve the problems in the most real set.

    Views (last year): 7. Citations: 1 (RSCI).
Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"