All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The long-term empirical macro model of world dynamics
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 883-891Views (last year): 4. Citations: 3 (RSCI).The work discusses the methodological basis and problems of modeling of world dynamics. Outlines approaches to the construction of a new simulation model of global development and the results of the simulation. The basis of the model building is laid empirical approach which based on the statistical analysis of the main socio-economic indicators. On the basis of this analysis identified the main variables. Dynamic equations (in continuous differential form) were written for these variables. Dependencies between variables were selected based on the dynamics of indicators in the past and on the basis of expert assessments, while econometric techniques were used, based on regression analysis. Calculations have been performed for the resulting dynamic equations system, the results are presented in the form of a trajectories beam for those indicators that are directly observable, and for which statistics are available. Thus, it is possible to assess the scatter of the trajectories and understand the predictive capability of this model.
-
The analysis of images in control systems of unmanned automobiles on the base of energy features model
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 369-376Views (last year): 31. Citations: 1 (RSCI).The article shows the relevance of research work in the field of creating control systems for unmanned vehicles based on computer vision technologies. Computer vision tools are used to solve a large number of different tasks, including to determine the location of the car, detect obstacles, determine a suitable parking space. These tasks are resource intensive and have to be performed in real time. Therefore, it is important to develop effective models, methods and tools that ensure the achievement of the required time and accuracy for use in unmanned vehicle control systems. In this case, the choice of the image representation model is important. In this paper, we consider a model based on the wavelet transform, which makes it possible to form features characterizing the energy estimates of the image points and reflecting their significance from the point of view of the contribution to the overall image energy. To form a model of energy characteristics, a procedure is performed based on taking into account the dependencies between the wavelet coefficients of various levels and the application of heuristic adjustment factors for strengthening or weakening the influence of boundary and interior points. On the basis of the proposed model, it is possible to construct descriptions of images their characteristic features for isolating and analyzing, including for isolating contours, regions, and singular points. The effectiveness of the proposed approach to image analysis is due to the fact that the objects in question, such as road signs, road markings or car numbers that need to be detected and identified, are characterized by the relevant features. In addition, the use of wavelet transforms allows to perform the same basic operations to solve a set of tasks in onboard unmanned vehicle systems, including for tasks of primary processing, segmentation, description, recognition and compression of images. The such unified approach application will allow to reduce the time for performing all procedures and to reduce the requirements for computing resources of the on-board system of an unmanned vehicle.
-
Numerical simulation of two-dimensional magnetic skyrmion structures
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1051-1061Magnetic systems, in which due to competition between the direct Heisenberg exchange and the Dzyaloshinskii –Moriya interaction, magnetic vortex structures — skyrmions appear, were studied using the Metropolis algorithm.
The conditions for the nucleation and stable existence of magnetic skyrmions in two-dimensional magnetic films in the frame of the classical Heisenberg model were considered in the article. A thermal stability of skyrmions in a magnetic film was studied. The processes of the formation of various states in the system at different values of external magnetic fields were considered, various phases into which the Heisenberg spin system passes were recognized. The authors identified seven phases: paramagnetic, spiral, labyrinth, spiralskyrmion, skyrmion, skyrmion-ferromagnetic and ferromagnetic phases, a detailed analysis of the configurations is given in the article.
Two phase diagrams were plotted: the first diagram shows the behavior of the system at a constant $D$ depending on the values of the external magnetic field and temperature $(T, B)$, the second one shows the change of the system configurations at a constant temperature $T$ depending on the magnitude of the Dzyaloshinskii – Moriya interaction and external magnetic field: $(D, B)$.
The data from these numerical experiments will be used in further studies to determine the model parameters of the system for the formation of a stable skyrmion state and to develop methods for controlling skyrmions in a magnetic film.
-
Monitoring the spread of Sosnowskyi’s hogweed using a random forest machine learning algorithm in Google Earth Engine
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1357-1370Examining the spectral response of plants from data collected using remote sensing has a lot of potential for solving real-world problems in different fields of research. In this study, we have used the spectral property to identify the invasive plant Heracleum sosnowskyi Manden from satellite imagery. H. sosnowskyi is an invasive plant that causes many harms to humans, animals and the ecosystem at large. We have used data collected from the years 2018 to 2020 containing sample geolocation data from the Moscow Region where this plant exists and we have used Sentinel-2 imagery for the spectral analysis towards the aim of detecting it from the satellite imagery. We deployed a Random Forest (RF) machine learning model within the framework of Google Earth Engine (GEE). The algorithm learns from the collected data, which is made up of 12 bands of Sentinel-2, and also includes the digital elevation together with some spectral indices, which are used as features in the algorithm. The approach used is to learn the biophysical parameters of H. sosnowskyi from its reflectances by fitting the RF model directly from the data. Our results demonstrate how the combination of remote sensing and machine learning can assist in locating H. sosnowskyi, which aids in controlling its invasive expansion. Our approach provides a high detection accuracy of the plant, which is 96.93%.
-
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
Model for economic interests agreement in duopoly’s making price decisions
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1309-1329Views (last year): 10. Citations: 2 (RSCI).The model of market pricing in duopoly describing the prices dynamics as a two-dimensional map is presented. It is shown that the fixed point of the map coincides with the local Nash-equilibrium price in duopoly game. There have been numerically identified a bifurcation of the fixed point, shown the scheme of transition from periodic to chaotic mode through a doubling period. To ensure the sustainability of local Nashequilibrium price the controlling chaos mechanism has been proposed. This mechanism allows to harmonize the economic interests of the firms and to form the balanced pricing policy.
-
Detection of influence of upper working roll’s vibrayion on thickness of sheet at cold rolling with the help of DEFORM-3D software
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 111-116Views (last year): 12. Citations: 1 (RSCI).Technical diagnosis’ current trends are connected to application of FEM computer simulation, which allows, to some extent, replace real experiments, reduce costs for investigation and minimize risks. Computer simulation, just at the stage of research and development, allows carrying out of diagnostics of equipment to detect permissible fluctuations of parameters of equipment’s work. Peculiarity of diagnosis of rolling equipment is that functioning of rolling equipment is directly tied with manufacturing of product with required quality, including accuracy. At that design of techniques of technical diagnosis and diagnostical modelling is very important. Computer simulation of cold rolling of strip was carried out. At that upper working roll was doing vibrations in horizontal direction according with published data of experiments on continuous 1700 rolling mill. Vibration of working roll in a stand appeared due to gap between roll’s craft and guide in a stand and led to periodical fluctuations of strip’s thickness. After computer simulation with the help of DEFORM software strip with longitudinal and transversal thickness variation was gotten. Visualization of strip’s geometrical parameters, according with simulation data, corresponded to type of inhomogeneity of surface of strip rolled in real. Further analysis of thickness variation was done in order to identify, on the basis of simulation, sources of periodical components of strip’s thickness, whose reasons are malfunctions of equipment. Advantage of computer simulation while searching the sources of forming of thickness variation is that different hypothesis concerning thickness formations may be tested without conducting real experiments and costs of different types may be reduced. Moreover, while simulation, initial strip’s thickness will not have fluctuations as opposed to industrial or laboratorial experiments. On the basis of spectral analysis of random process, it was established that frequency of changing of strip’s thickness after rolling in one stand coincides with frequency of working roll’s vibration. Results of computer simulation correlate with results of the researches for 1700 mill. Therefore, opportunity to apply computer simulation to find reasons of formation of thickness variation of strip on the industrial rolling mill is shown.
-
Model for operational optimal control of financial recourses distribution in a company
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358Views (last year): 33.A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.
The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.
Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.
-
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
-
A model for analyzing income inequality based on a finite functional sequence (adequacy and application problems)
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 675-689The paper considers the adequacy of the model developed earlier by the author for the analysis of income inequality and based on an empirically confirmed hypothesis that the relative (to the income of the richest group) income values of 20% population groups in total income can be represented as a finite functional sequence, each member of which depends on one parameter — a specially defined indicator of inequality. It is shown that in addition to the existing methods of inequality analysis, the model makes it possible to estimate with the help of analytical expressions the income shares of 20%, 10% and smaller groups of the population for different levels of inequality, as well as to identify how they change with the growth of inequality, to estimate the level of inequality for known ratios between the incomes of different groups of the population, etc.
The paper provides a more detailed confirmation of the proposed model adequacy in comparison with the previously obtained results of statistical analysis of empirical data on the distribution of income between the 20% and 10% population groups. It is based on the analysis of certain ratios between the values of quintiles and deciles according to the proposed model. The verification of these ratios was carried out using a set of data for a large number of countries and the estimates obtained confirm the sufficiently high accuracy of the model.
Data are presented that confirm the possibility of using the model to analyze the dependence of income distribution by population groups on the level of inequality, as well as to estimate the inequality indicator for income ratios between different groups, including variants when the income of the richest 20% is equal to the income of the poor 60 %, income of the middle class 40% or income of the rest 80% of the population, as well as when the income of the richest 10% is equal to the income of the poor 40 %, 50% or 60%, to the income of various middle class groups, etc., as well as for cases, when the distribution of income obeys harmonic proportions and when the quintiles and deciles corresponding to the middle class reach a maximum. It is shown that the income shares of the richest middle class groups are relatively stable and have a maximum at certain levels of inequality.
The results obtained with the help of the model can be used to determine the standards for developing a policy of gradually increasing the level of progressive taxation in order to move to the level of inequality typical of countries with social oriented economy.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




