All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 409-431The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.
-
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
-
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
-
Formalized decision-making model: taking into account value motivation
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 323-338The paper considers the problems of mathematical description of deontological aspects influencing the behavior of decision makers. A methodology is proposed for correlating utilitarian (material) and deontological (value) aspects in their decision-making, taking into account their psychological characteristics. A mathematical model is proposed for the joint consideration of utilitarian and deontological factors in decision-making in various situations. Some patterns related to this consideration are identified, and their formal description is given. The model shows that there is a tendency for a gradual decrease in the level of deontology in evaluating alternatives when making decisions (compared to what the outside world inclines to) towards greater utilitarianism. Over time, this trend begins to influence public opinion and society’s attitude to moral norms, gradually reducing the overall level of morality in society. This process can be stopped only by constantly and purposefully maintaining a high level of deontology by society and the state (ideological work, promotion of traditional values, educational work at school, etc.), otherwise society will inevitably become utilitarian over time, focusing exclusively on material factors when making decisions.
In the future, it is planned to use the developed tools for analyzing specific situations, including for analyzing the patterns of civilizational cycles: the rise and fall of the Roman Empire, the USSR, and modern Western civilization).
-
Determination of post-reconstruction correction factors for quantitative assessment of pathological bone lesions using gamma emission tomography
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 677-696In single-photon emission computed tomography (SPECT), patients with bone disorders receive a radiopharmaceutical (RP) that accumulates selectively in pathological lesions. Accurate quantification of RP uptake plays a critical role in disease staging, prognosis, and the development of personalized treatment strategies. Traditionally, the accuracy of quantitative assessment is evaluated through in vitro clinical trials using the standardized physical NEMA IEC phantom, which contains six spheres simulating lesions of various sizes. However, such experiments are limited by high costs and radiation exposure to researchers. This study proposes an alternative in silico approach based on numerical simulation using a digital twin of the NEMA IEC phantom. The computational framework allows for extensive testing under varying conditions without physical constraints. Analogous to clinical protocols, we calculated the recovery coefficient (RCmax), defined as the ratio of the maximum activity in a lesion to its known true value. The simulation settings were tailored to clinical SPECT/CT protocols involving 99mTc for patients with bone-related diseases. For the first time, we systematically analyzed the impact of lesion-to-background ratios and post-reconstruction filtering on RCmax values. Numerical experiments revealed the presence of edge artifacts in reconstructed lesion images, consistent with those observed in both real NEMA IEC phantom studies and patient scans. These artifacts introduce instability into the iterative reconstruction process and lead to errors in activity quantification. Our results demonstrate that post-filtering helps suppress edge artifacts and stabilizes the solution. However, it also significantly underestimates activity in small lesions. To address this issue, we introduce post-reconstruction correction factors derived from our simulations to improve the accuracy of quantification in lesions smaller than 20 mm in diameter.
-
Multistability for a mathematical model of a tritrophic system in a heterogeneous habitat
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 923-939We consider a spatiotemporal model of a tritrophic system describing the interaction between prey, predator, and superpredator in an environment with nonuniform resource distribution. The model incorporates superpredator omnivory (Intraguild Predation, IGP), diffusion, and directed migration (taxis), the latter modeled using a logarithmic function of resource availability and prey density. The primary focus is on analyzing the multistability of the system and the role of cosymmetry in the formation of continuous families of steady-state solutions. Using a numerical-analytical approach, we study both spatially homogeneous and inhomogeneous steady-state solutions. It is established that under additional relations between the parameters governing local predator interactions and diffusion coefficients, the system exhibits cosymmetry, leading to the emergence of a family of stable steady-state solutions proportional to the resource function. We demonstrate that the cosymmetry is independent of the resource function in the case of a heterogeneous environment. The stability of stationary distributions is investigated using spectral methods. Violation of the cosymmetry conditions results in the breakdown of the solution family and the emergence of isolated equilibria, as well as prolonged transient dynamics reflecting the system’s “memory” of the vanished states. Depending on initial conditions and parameters, the system exhibits transitions to single-predator regimes (survival of either the predator or superpredator) or predator coexistence. Numerical experiments based on the method of lines, which involves finite difference discretization in space and Runge –Kutta integration in time, confirm the system’s multistability and illustrate the disappearance of solution families when cosymmetry is broken.
-
Mathematical modeling of drying of coal particles in the gas stream
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 357-367Citations: 2 (RSCI).Physical-mathematical model of drying of coal particles in the gas stream and the results of calculating the drying of the particles of brown coal in a drying tube are presented. It is shown that for the drying of coal can be used superheated water vapor. Thermodynamic model of drying of a particle in a drying tube are proposed. It allows to conduct a preliminary assessment of parameters of drying process.
-
Model method of vertical chlorophyll concentration reconstruction from satellite data
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 473-482Views (last year): 5. Citations: 2 (RSCI).A model, describing the influence of external factors on temporal evolution of phytoplankton distribution in a horizontally-homogenous water layer, is presented. This model is based upon the reactiondiffusion equation and takes into account the main factors of influence: mineral nutrients, insolation and temperature. The mineral nutrients and insolation act oppositely on spatial phytoplankton distribution. The results of numerical modeling are presented and the prospect of applying this model to reconstruction of phytoplankton distribution from sea-surface satellite data is discussed. The model was used to estimate the chlorophyll content of the Peter the Great Bay (Sea of Japan).
-
Comparative analysis of Darcy and Brinkman models at studying of transient conjugate natural convection in a porous cylindrical cavity
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 623-634Views (last year): 1. Citations: 4 (RSCI).Comparative analysis of two models of porous medium (Dacry and Brinkman) on an example of mathematical simulation of transient natural convection in a porous vertical cylindrical cavity with heat-conducting shell of finite thickness in conditions of convective cooling from an environment has been carried out. The boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function, vorticity and temperature has been solved by implicit finite difference method. The presented verification results validate used numerical approach and also confirm that the solution is not dependent on the mesh size. Features of the conjugate heat transfer problems with considered models of porous medium have been determined.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




