All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Simulation of interprocessor interactions for MPI-applications in the cloud infrastructure
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 955-963Views (last year): 10. Citations: 1 (RSCI).А new cloud center of parallel computing is to be created in the Laboratory of Information Technologies (LIT) of the Joint Institute for Nuclear Research JINR) what is expected to improve significantly the efficiency of numerical calculations and expedite the receipt of new physically meaningful results due to the more rational use of computing resources. To optimize a scheme of parallel computations at a cloud environment it is necessary to test this scheme for various combinations of equipment parameters (processor speed and numbers, throughput оf а communication network etc). As a test problem, the parallel MPI algorithm for calculations of the long Josephson junctions (LDJ) is chosen. Problems of evaluating the impact of abovementioned factors of computing mean on the computing speed of the test problem are solved by simulation with the simulation program SyMSim developed in LIT.
The simulation of the LDJ calculations in the cloud environment enable users without a series of test to find the optimal number of CPUs with a certain type of network run the calculations in a real computer environment. This can save significant computational time in countable resources. The main parameters of the model were obtained from the results of the computational experiment conducted on a special cloud-based testbed. Computational experiments showed that the pure computation time decreases in inverse proportion to the number of processors, but depends significantly on network bandwidth. Comparison of results obtained empirically with the results of simulation showed that the simulation model correctly simulates the parallel calculations performed using the MPI-technology. Besides it confirms our recommendation: for fast calculations of this type it is needed to increase both, — the number of CPUs and the network throughput at the same time. The simulation results allow also to invent an empirical analytical formula expressing the dependence of calculation time by the number of processors for a fixed system configuration. The obtained formula can be applied to other similar studies, but requires additional tests to determine the values of variables.
-
Solution of the problem of optimal control of the process of methanogenesis based on the Pontryagin maximum principle
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 357-367The paper presents a mathematical model that describes the process of obtaining biogas from livestock waste. This model describes the processes occurring in a biogas plant for mesophilic and thermophilic media, as well as for continuous and periodic modes of substrate inflow. The values of the coefficients of this model found earlier for the periodic mode, obtained by solving the problem of model identification from experimental data using a genetic algorithm, are given.
For the model of methanogenesis, an optimal control problem is formulated in the form of a Lagrange problem, whose criterial functionality is the output of biogas over a certain period of time. The controlling parameter of the task is the rate of substrate entry into the biogas plant. An algorithm for solving this problem is proposed, based on the numerical implementation of the Pontryagin maximum principle. In this case, a hybrid genetic algorithm with an additional search in the vicinity of the best solution using the method of conjugate gradients was used as an optimization method. This numerical method for solving an optimal control problem is universal and applicable to a wide class of mathematical models.
In the course of the study, various modes of submission of the substrate to the digesters, temperature environments and types of raw materials were analyzed. It is shown that the rate of biogas production in the continuous feed mode is 1.4–1.9 times higher in the mesophilic medium (1.9–3.2 in the thermophilic medium) than in the periodic mode over the period of complete fermentation, which is associated with a higher feed rate of the substrate and a greater concentration of nutrients in the substrate. However, the yield of biogas during the period of complete fermentation with a periodic mode is twice as high as the output over the period of a complete change of the substrate in the methane tank at a continuous mode, which means incomplete processing of the substrate in the second case. The rate of biogas formation for a thermophilic medium in continuous mode and the optimal rate of supply of raw materials is three times higher than for a mesophilic medium. Comparison of biogas output for various types of raw materials shows that the highest biogas output is observed for waste poultry farms, the least — for cattle farms waste, which is associated with the nutrient content in a unit of substrate of each type.
-
A gradient method with inexact oracle for composite nonconvex optimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 321-334In this paper, we develop a new first-order method for composite nonconvex minimization problems with simple constraints and inexact oracle. The objective function is given as a sum of «hard», possibly nonconvex part, and «simple» convex part. Informally speaking, oracle inexactness means that, for the «hard» part, at any point we can approximately calculate the value of the function and construct a quadratic function, which approximately bounds this function from above. We give several examples of such inexactness: smooth nonconvex functions with inexact H¨older-continuous gradient, functions given by the auxiliary uniformly concave maximization problem, which can be solved only approximately. For the introduced class of problems, we propose a gradient-type method, which allows one to use a different proximal setup to adapt to the geometry of the feasible set, adaptively chooses controlled oracle error, allows for inexact proximal mapping. We provide a convergence rate for our method in terms of the norm of generalized gradient mapping and show that, in the case of an inexact Hölder-continuous gradient, our method is universal with respect to Hölder parameters of the problem. Finally, in a particular case, we show that the small value of the norm of generalized gradient mapping at a point means that a necessary condition of local minimum approximately holds at that point.
-
Analysis of the physics-informed neural network approach to solving ordinary differential equations
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1621-1636Considered the application of physics-informed neural networks using multi layer perceptrons to solve Cauchy initial value problems in which the right-hand sides of the equation are continuous monotonically increasing, decreasing or oscillating functions. With the use of the computational experiments the influence of the construction of the approximate neural network solution, neural network structure, optimization algorithm and software implementation means on the learning process and the accuracy of the obtained solution is studied. The analysis of the efficiency of the most frequently used machine learning frameworks in software development with the programming languages Python and C# is carried out. It is shown that the use of C# language allows to reduce the time of neural networks training by 20–40%. The choice of different activation functions affects the learning process and the accuracy of the approximate solution. The most effective functions in the considered problems are sigmoid and hyperbolic tangent. The minimum of the loss function is achieved at the certain number of neurons of the hidden layer of a single-layer neural network for a fixed training time of the neural network model. It’s also mentioned that the complication of the network structure increasing the number of neurons does not improve the training results. At the same time, the size of the grid step between the points of the training sample, providing a minimum of the loss function, is almost the same for the considered Cauchy problems. Training single-layer neural networks, the Adam method and its modifications are the most effective to solve the optimization problems. Additionally, the application of twoand three-layer neural networks is considered. It is shown that in these cases it is reasonable to use the LBFGS algorithm, which, in comparison with the Adam method, in some cases requires much shorter training time achieving the same solution accuracy. The specificity of neural network training for Cauchy problems in which the solution is an oscillating function with monotonically decreasing amplitude is also investigated. For these problems, it is necessary to construct a neural network solution with variable weight coefficient rather than with constant one, which improves the solution in the grid cells located near by the end point of the solution interval.
-
Some relationships between thermodynamic characteristics and water vapor and carbon dioxide fluxes in a recently clear-cut area
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 965-980Views (last year): 15. Citations: 1 (RSCI).The temporal variability of exergy of short-wave and long-wave radiation and its relationships with sensible heat, water vapor (H2O) and carbon dioxide (CO2) fluxes on a recently clear-cut area in a mixed coniferous and small-leaved forest in the Tver region is discussed. On the basis of the analysis of radiation and exergy efficiency coefficients suggested by Yu.M. Svirezhev it was shown that during the first eight months after clearcutting the forest ecosystem functions as a "heat engine" i.e. the processes of energy dissipation dominated over processes of biomass production. To validate the findings the statistical analysis of temporary variability of meteorological parameters, as well as, daily fluxes of sensible heat, H2O and CO2 was provided using the trigonometrical polynomials. The statistical models that are linearly depended on an exergy of short-wave and long-wave radiation were obtained for mean daily values of CO2 fluxes, gross primary production of regenerated vegetation and sensible heat fluxes. The analysis of these dependences is also confirmed the results obtained from processing the radiation and exergy efficiency coefficients. The splitting the time series into separate time intervals, e.g. “spring–summer” and “summer–autumn”, allowed revealing that the statistically significant relationships between atmospheric fluxes and exergy were amplified in summer months as the clear-cut area was overgrown by grassy and young woody vegetation. The analysis of linear relationships between time-series of latent heat fluxes and exergy showed their statistical insignificance. The linear relationships between latent heat fluxes and temperature were in turn statistically significant. The air temperature was a key factor improving the accuracy of the models, whereas effect of exergy was insignificant. The results indicated that at the time of active vegetation regeneration within the clear-cut area the seasonal variability of surface evaporation is mainly governed by temperature variation.
-
Application of a balanced identification method for gap-filling in CO2 flux data in a sphagnum peat bog
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 153-171Views (last year): 19.The method of balanced identification was used to describe the response of Net Ecosystem Exchange of CO2 (NEE) to change of environmental factors, and to fill the gaps in continuous CO2 flux measurements in a sphagnum peat bog in the Tver region. The measurements were provided in the peat bog by the eddy covariance method from August to November of 2017. Due to rainy weather conditions and recurrent periods with low atmospheric turbulence the gap proportion in measured CO2 fluxes at our experimental site during the entire period of measurements exceeded 40%. The model developed for the gap filling in long-term experimental data considers the NEE as a difference between Ecosystem Respiration (RE) and Gross Primary Production (GPP), i.e. key processes of ecosystem functioning, and their dependence on incoming solar radiation (Q), soil temperature (T), water vapor pressure deficit (VPD) and ground water level (WL). Applied for this purpose the balanced identification method is based on the search for the optimal ratio between the model simplicity and the data fitting accuracy — the ratio providing the minimum of the modeling error estimated by the cross validation method. The obtained numerical solutions are characterized by minimum necessary nonlinearity (curvature) that provides sufficient interpolation and extrapolation characteristics of the developed models. It is particularly important to fill the missing values in NEE measurements. Reviewing the temporary variability of NEE and key environmental factors allowed to reveal a statistically significant dependence of GPP on Q, T, and VPD, and RE — on T and WL, respectively. At the same time, the inaccuracy of applied method for simulation of the mean daily NEE, was less than 10%, and the error in NEE estimates by the method was higher than by the REddyProc model considering the influence on NEE of fewer number of environmental parameters. Analyzing the gap-filled time series of NEE allowed to derive the diurnal and inter-daily variability of NEE and to obtain cumulative CO2 fluxs in the peat bog for selected summer-autumn period. It was shown, that the rate of CO2 fixation by peat bog vegetation in August was significantly higher than the rate of ecosystem respiration, while since September due to strong decrease of GPP the peat bog was turned into a consistent source of CO2 for the atmosphere.
-
Research on the achievability of a goal in a medical quest
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1149-1179The work presents an experimental study of the tree structure that occurs during a medical examination. At each meeting with a medical specialist, the patient receives a certain number of areas for consulting other specialists or for tests. A tree of directions arises, each branch of which the patient should pass. Depending on the branching of the tree, it can be as final — and in this case the examination can be completed — and endless when the patient’s goal cannot be achieved. In the work both experimentally and theoretically studied the critical properties of the transition of the system from the forest of the final trees to the forest endless, depending on the probabilistic characteristics of the tree.
For the description, a model is proposed in which a discrete function of the probability of the number of branches on the node repeats the dynamics of a continuous gaussian distribution. The characteristics of the distribution of the Gauss (mathematical expectation of $x_0$, the average quadratic deviation of $\sigma$) are model parameters. In the selected setting, the task refers to the problems of branching random processes (BRP) in the heterogeneous model of Galton – Watson.
Experimental study is carried out by numerical modeling on the final grilles. A phase diagram was built, the boundaries of areas of various phases are determined. A comparison was made with the phase diagram obtained from theoretical criteria for macrosystems, and an adequate correspondence was established. It is shown that on the final grilles the transition is blurry.
The description of the blurry phase transition was carried out using two approaches. In the first, standard approach, the transition is described using the so-called inclusion function, which makes the meaning of the share of one of the phases in the general set. It was established that such an approach in this system is ineffective, since the found position of the conditional boundary of the blurred transition is determined only by the size of the chosen experimental lattice and does not bear objective meaning.
The second, original approach is proposed, based on the introduction of an parameter of order equal to the reverse average tree height, and the analysis of its behavior. It was established that the dynamics of such an order parameter in the $\sigma = \text{const}$ section with very small differences has the type of distribution of Fermi – Dirac ($\sigma$ performs the same function as the temperature for the distribution of Fermi – Dirac, $x_0$ — energy function). An empirical expression has been selected for the order parameter, an analogue of the chemical potential is introduced and calculated, which makes sense of the characteristic scale of the order parameter — that is, the values of $x_0$, in which the order can be considered a disorder. This criterion is the basis for determining the boundary of the conditional transition in this approach. It was established that this boundary corresponds to the average height of a tree equal to two generations. Based on the found properties, recommendations for medical institutions are proposed to control the provision of limb of the path of patients.
The model discussed and its description using conditionally-infinite trees have applications to many hierarchical systems. These systems include: internet routing networks, bureaucratic networks, trade and logistics networks, citation networks, game strategies, population dynamics problems, and others.
-
Biohydrochemical portrait of the White Sea
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 125-160The biohydrochemical portrait of the White Sea is constructed on the CNPSi-model calculations based on long-term mean annual observations (average monthly hydrometeorological, hydrochemical and hydrobiological parameters of the marine environment) as well as on updated information on the nutrient input to the sea with the runoff of the main river tributaries (Niva, Onega, Northern Dvina, Mezen, Kem, Keret). Parameters of the marine environment are temperature, light, transparency, and biogenic load. Ecological characteristics of the sea “portrait” were calculated for nine marine areas (Kandalaksha, Onega, Dvinsky, Mezensky Bays, Solovetsky Islands, Basin, Gorlot, Voronka, Chupa Bay), these are: the concentration changes of organic and mineral compounds of biogenic elements (C, N, P, Si), the biomass of organisms of the lower trophic level (heterotrophic bacteria, diatomic phytoplankton, herbivorous and predatory zooplankton) and other ones (rates of substance concentration and organism biomass changes, internal and external substance flows, balances of individual substances and nutrients as a whole). Parameters of the marine environment state (water temperature, ratio of mineral fractions N < P) and dominant diatom phytoplankton in the sea (abundance, production, biomass, chlorophyll content a) were calculated and compared with the results of individual surveys (for 1972–1991 and 2007–2012) of the White Sea water areas. The methods for estimating the values of these parameters from observations and calculations differ, however, the calculated values of the phytoplankton state are comparable with the measurements and are similar to the data given in the literature. Therefore, according to the literature data, the annual production of diatoms in the White Sea is estimated at 1.5–3 million tons C (at a vegetation period of 180 days), and according to calculations it is ~2 and 3.5 million tons C for vegetation period of 150 and 180 days respectively.
Keywords: White Sea ecosystem, nutrients, heterotrophic bacterioplankton, diatom phytoplankton, herbivorous and predatory zooplankton, detritus, trophic chain, CNPSi-model of nutrient biotransformation, ecological portrait of the White Sea, the comparison of the observed and calculated parameters of diatoms (abundance, products, biomass, chlorophyll a).Views (last year): 15. Citations: 1 (RSCI). -
Signal and noise calculation at Rician data analysis by means of combining maximum likelihood technique and method of moments
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 511-523Views (last year): 11.The paper develops a new mathematical method of the joint signal and noise calculation at the Rice statistical distribution based on combing the maximum likelihood method and the method of moments. The calculation of the sough-for values of signal and noise is implemented by processing the sampled measurements of the analyzed Rician signal’s amplitude. The explicit equations’ system has been obtained for required signal and noise parameters and the results of its numerical solution are provided confirming the efficiency of the proposed technique. It has been shown that solving the two-parameter task by means of the proposed technique does not lead to the increase of the volume of demanded calculative resources if compared with solving the task in one-parameter approximation. An analytical solution of the task has been obtained for the particular case of small value of the signal-to-noise ratio. The paper presents the investigation of the dependence of the sought for parameters estimation accuracy and dispersion on the quantity of measurements in experimental sample. According to the results of numerical experiments, the dispersion values of the estimated sought-for signal and noise parameters calculated by means of the proposed technique change in inverse proportion to the quantity of measurements in a sample. There has been implemented a comparison of the accuracy of the soughtfor Rician parameters’ estimation by means of the proposed technique and by earlier developed version of the method of moments. The problem having been considered in the paper is meaningful for the purposes of Rician data processing, in particular, at the systems of magnetic-resonance visualization, in devices of ultrasonic visualization, at optical signals’ analysis in range-measuring systems, at radar signals’ analysis, as well as at solving many other scientific and applied tasks that are adequately described by the Rice statistical model.
-
Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 493-501Views (last year): 9.Theoretical and experimental investigations of water vapor interaction with porous materials are carried out both at the macro level and at the micro level. At the macro level, the influence of the arrangement structure of individual pores on the processes of water vapor interaction with porous material as a continuous medium is studied. At the micro level, it is very interesting to investigate the dependence of the characteristics of the water vapor interaction with porous media on the geometry and dimensions of the individual pore.
In this paper, a study was carried out by means of mathematical modelling of the processes of water vapor interaction with suffering pore of the cylindrical type. The calculations were performed using a model of a hybrid type combining a molecular-dynamic and a macro-diffusion approach for describing water vapor interaction with an individual pore. The processes of evolution to the state of thermodynamic equilibrium of macroscopic characteristics of the system such as temperature, density, and pressure, depending on external conditions with respect to pore, were explored. The dependence of the evolution parameters on the distribution of the diffusion coefficient in the pore, obtained as a result of molecular dynamics modelling, is examined. The relevance of these studies is due to the fact that all methods and programs used for the modelling of the moisture and heat conductivity are based on the use of transport equations in a porous material as a continuous medium with known values of the transport coefficients, which are usually obtained experimentally.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




