Результаты поиска по 'network model':
Найдено статей: 99
  1. Lobanov A.I.
    Scientific and pedagogical schools founded by A. S. Kholodov
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579

    In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.

    The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.

    This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.

    On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).

    There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.

    The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.

    Views (last year): 42.
  2. Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1533-1538
  3. Akhmetvaleev A.M., Katasev A.S.
    Neural network model of human intoxication functional state determining in some problems of transport safety solution
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 285-293

    This article solves the problem of vehicles drivers intoxication functional statedetermining. Its solution is relevant in the transport security field during pre-trip medical examination. The problem solution is based on the papillomometry method application, which allows to evaluate the driver state by his pupillary reaction to illumination change. The problem is to determine the state of driver inebriation by the analysis of the papillogram parameters values — a time series characterizing the change in pupil dimensions upon exposure to a short-time light pulse. For the papillograms analysis it is proposed to use a neural network. A neural network model for determining the drivers intoxication functional state is developed. For its training, specially prepared data samples are used which are the values of the following parameters of pupillary reactions grouped into two classes of functional states of drivers: initial diameter, minimum diameter, half-constriction diameter, final diameter, narrowing amplitude, rate of constriction, expansion rate, latent reaction time, the contraction time, the expansion time, the half-contraction time, and the half-expansion time. An example of the initial data is given. Based on their analysis, a neural network model is constructed in the form of a single-layer perceptron consisting of twelve input neurons, twenty-five neurons of the hidden layer, and one output neuron. To increase the model adequacy using the method of ROC analysis, the optimal cut-off point for the classes of solutions at the output of the neural network is determined. A scheme for determining the drivers intoxication state is proposed, which includes the following steps: pupillary reaction video registration, papillogram construction, parameters values calculation, data analysis on the base of the neural network model, driver’s condition classification as “norm” or “rejection of the norm”, making decisions on the person being audited. A medical worker conducting driver examination is presented with a neural network assessment of his intoxication state. On the basis of this assessment, an opinion on the admission or removal of the driver from driving the vehicle is drawn. Thus, the neural network model solves the problem of increasing the efficiency of pre-trip medical examination by increasing the reliability of the decisions made.

    Views (last year): 42. Citations: 2 (RSCI).
  4. Simakov S.S.
    Modern methods of mathematical modeling of blood flow using reduced order methods
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 581-604

    The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiac cycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models. Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network. The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier – Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model’s validation, to the comparing different 1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy. It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.

    Views (last year): 62. Citations: 2 (RSCI).
  5. Matyushkin I.V., Zapletina M.A.
    Cellular automata review based on modern domestic publications
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 9-57

    The paper contains the analysis of the domestic publications issued in 2013–2017 years and devoted to cellular automata. The most of them concern on mathematical modeling. Scientometric schedules for 1990–2017 years have proved relevance of subject. The review allows to allocate the main personalities and the scientific directions/schools in modern Russian science, to reveal their originality or secondness in comparison with world science. Due to the authors choice of national publications basis instead of world, the paper claims the completeness and the fact is that about 200 items from the checked 526 references have an importance for science.

    In the Annex to the review provides preliminary information about CA — the Game of Life, a theorem about gardens of Eden, elementary CAs (together with the diagram of de Brujin), block Margolus’s CAs, alternating CAs. Attention is paid to three important for modeling semantic traditions of von Neumann, Zuse and Zetlin, as well as to the relationship with the concepts of neural networks and Petri nets. It is allocated conditional 10 works, which should be familiar to any specialist in CA. Some important works of the 1990s and later are listed in the Introduction.

    Then the crowd of publications is divided into categories: the modification of the CA and other network models (29 %), Mathematical properties of the CA and the connection with mathematics (5 %), Hardware implementation (3 %), Software implementation (5 %), Data Processing, recognition and Cryptography (8 %), Mechanics, physics and chemistry (20 %), Biology, ecology and medicine (15 %), Economics, urban studies and sociology (15 %). In parentheses the share of subjects in the array are indicated. There is an increase in publications on CA in the humanitarian sphere, as well as the emergence of hybrid approaches, leading away from the classic CA definition.

    Views (last year): 58.
  6. Kholodov Y.A.
    Development of network computational models for the study of nonlinear wave processes on graphs
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814

    In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.

  7. Belkina E.A., Zhestov E.A., Shestakov A.V.
    Methods for resolving the Braess paradox in the presence of autonomous vehicles
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 281-294

    Roads are a shared resource which can be used either by drivers and autonomous vehicles. Since the total number of vehicles increases annually, each considered vehicle spends more time in traffic jams, and thus the total travel time prolongs. The main purpose while planning the road system is to reduce the time spent on traveling. The optimization of transportation networks is a current goal, thus the formation of traffic flows by creating certain ligaments of the roads is of high importance. The Braess paradox states the existence of a network where the construction of a new edge leads to the increase of traveling time. The objective of this paper is to propose various solutions to the Braess paradox in the presence of autonomous vehicles. One of the methods of solving transportation topology problems is to introduce artificial restrictions on traffic. As an example of such restrictions, this article considers designated lanes which are available only for a certain type of vehicles. Designated lanes have their own location in the network and operating conditions. This article observes the most common two-roads traffic situations, analyzes them using analytical and numerical methods and presents the model of optimal traffic flow distribution, which considers different ways of lanes designation on isolated transportation networks. It was found that the modeling of designated lanes eliminates Braess’ paradox and optimizes the total traveling time. The solutions were shown on artificial networks and on the real-life example. A modeling algorithm for Braess network was proposed and its correctness was verified using the real-life example.

  8. In recent years, the use of neural network models for solving aerodynamics problems has become widespread. These models, trained on a set of previously obtained solutions, predict solutions to new problems. They are, in essence, interpolation algorithms. An alternative approach is to construct a neural network operator. This is a neural network that reproduces a numerical method used to solve a problem. It allows to find the solution in iterations. The paper considers the construction of such an operator using the UNet neural network with a spatial attention mechanism. It solves flow problems on a rectangular uniform grid that is common to a streamlined body and flow field. A correction mechanism is proposed to clarify the obtained solution. The problem of the stability of such an algorithm for solving a stationary problem is analyzed, and a comparison is made with other variants of its construction, including pushforward trick and positional encoding. The issue of selecting a set of iterations for forming a train dataset is considered, and the behavior of the solution is assessed using repeated use of a neural network operator.

    A demonstration of the method is provided for the case of flow around a rounded plate with a turbulent flow, with various options for rounding, for fixed parameters of the incoming flow, with Reynolds number $\text{Re} = 10^5$ and Mach number $M = 0.15$. Since flows with these parameters of the incoming flow can be considered incompressible, only velocity components are directly studied. At the same time, the neural network model used to construct the operator has a common decoder for both velocity components. Comparison of flow fields and velocity profiles along the normal and outline of the body, obtained using a neural network operator and numerical methods, is carried out. Analysis is performed both on the plate and rounding. Simulation results confirm that the neural network operator allows finding a solution with high accuracy and stability.

  9. Kiselev M.V., Urusov A.M., Ivanitsky A.Y.
    The adaptive Gaussian receptive fields for spiking encoding of numeric variables
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 389-400

    Conversion of numeric data to the spiking form and information losses in this process are serious problems limiting usage of spiking neural networks in applied informational systems. While physical values are represented by numbers, internal representation of information inside spiking neural networks is based on spikes — elementary objects emitted and processed by neurons. This problem is especially hard in the reinforcement learning applications where an agent should learn to behave in the dynamic real world because beside the accuracy of the encoding method, its dynamic characteristics should be considered as well. The encoding algorithm based on the Gaussian receptive fields (GRF) is frequently used. In this method, one numeric variable fed to the network is represented by spike streams emitted by a certain set of network input nodes. The spike frequency in each stream is determined by proximity of the current variable value to the center of the receptive field corresponding to the given input node. In the standard GRF algorithm, the receptive field centers are placed equidistantly. However, it is inefficient in the case of very uneven distribution of the variable encoded. In the present paper, an improved version of this method is proposed which is based on adaptive selection of the Gaussian centers and spike stream frequencies. This improved GRF algorithm is compared with its standard version in terms of amount of information lost in the coding process and of accuracy of classification models built on spike-encoded data. The fraction of information retained in the process of the standard and adaptive GRF encoding is estimated using the direct and reverse encoding procedures applied to a large sample from the triangular probability distribution and counting coinciding bits in the original and restored samples. The comparison based on classification was performed on a task of evaluation of current state in reinforcement learning. For this purpose, the classification models were created by machine learning algorithms of very different nature — nearest neighbors algorithm, random forest and multi-layer perceptron. Superiority of our approach is demonstrated on all these tests.

  10. Muravlev V.I., Brazhe A.R.
    Denoising fluorescent imaging data with two-step truncated HOSVD
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 529-542

    Fluorescent imaging data are currently widely used in neuroscience and other fields. Genetically encoded sensors, based on fluorescent proteins, provide a wide inventory enabling scientiests to image virtually any process in a living cell and extracellular environment. However, especially due to the need for fast scanning, miniaturization, etc, the imaging data can be severly corrupred with multiplicative heteroscedactic noise, reflecting stochastic nature of photon emission and photomultiplier detectors. Deep learning architectures demonstrate outstanding performance in image segmentation and denoising, however they can require large clean datasets for training, and the actual data transformation is not evident from the network architecture and weight composition. On the other hand, some classical data transforms can provide for similar performance in combination with more clear insight in why and how it works. Here we propose an algorithm for denoising fluorescent dynamical imaging data, which is based on multilinear higher-order singular value decomposition (HOSVD) with optional truncation in rank along each axis and thresholding of the tensor of decomposition coefficients. In parallel, we propose a convenient paradigm for validation of the algorithm performance, based on simulated flurescent data, resulting from biophysical modeling of calcium dynamics in spatially resolved realistic 3D astrocyte templates. This paradigm is convenient in that it allows to vary noise level and its resemblance of the Gaussian noise and that it provides ground truth fluorescent signal that can be used to validate denoising algorithms. The proposed denoising method employs truncated HOSVD twice: first, narrow 3D patches, spanning the whole recording, are processed (local 3D-HOSVD stage), second, 4D groups of 3D patches are collaboratively processed (non-local, 4D-HOSVD stage). The effect of the first pass is twofold: first, a significant part of noise is removed at this stage, second, noise distribution is transformed to be more Gaussian-like due to linear combination of multiple samples in the singular vectors. The effect of the second stage is to further improve SNR. We perform parameter tuning of the second stage to find optimal parameter combination for denoising.

Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"