Результаты поиска по 'noise':
Найдено статей: 63
  1. Tran T.T., Pham C.T.
    A hybrid regularizers approach based model for restoring image corrupted by Poisson noise
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 965-978

    Image denoising is one of the fundamental problems in digital image processing. This problem usually refers to the reconstruction of an image from an observed image degraded by noise. There are many factors that cause this degradation such as transceiver equipment, or environmental influences, etc. In order to obtain higher quality images, many methods have been proposed for image denoising problem. Most image denoising method are based on total variation (TV) regularization to develop efficient algorithms for solving the related optimization problem. TV-based models have become a standard technique in image restoration with the ability to preserve image sharpness.

    In this paper, we focus on Poisson noise usually appearing in photon-counting devices. We propose an effective regularization model based on combination of first-order and fractional-order total variation for image reconstruction corrupted by Poisson noise. The proposed model allows us to eliminate noise while edge preserving. An efficient alternating minimization algorithm is employed to solve the optimization problem. Finally, provided numerical results show that our proposed model can preserve more details and get higher image visual quality than recent state-of-the-art methods.

  2. Gorkovets M.K., Favorskaya A.V., Petrov I.B.
    Calculating technogenic vibrations in urban environments using grid-characteristic method
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1119-1129

    Amid the ongoing trend of rapid urbanization and the intensive development of megacities and large cities worldwide, the impact of man-made vibrations on residential structures and infrastructure is increasing. The operation of subway systems, construction using pile-driving and drilling equipment, and heavy traffic have become active sources of wave disturbances, which can be a decisive factor in reducing the structural stability of buildings and, consequently, their long-term reliability. This paper proposes a numerical calculation using the grid-characteristic method to model elastic waves propagating through soil layers and load-bearing structures from various sources. By solving the direct problem of numerical pulse simulation and varying its location, the values of velocity vector projections and components of the Cauchy stress tensor were obtained at each time step. Two scenarios were examined: the first simulates the impact of noise generated by construction work or nearby traffic, while the second demonstrates how a subway running through an underground tunnel affects multi-story residential buildings. Wave propagation patterns from these sources were visualized in terms of the parameters of interest, enabling a quick and convenient comprehensive analysis of the problem. The analysis of the obtained data will help adjust the timing and types of repair work, identify structural weak points, and develop innovative methods for preserving historical buildings that are cultural heritage sites. Additionally, it will allow for the most economically optimal construction of modern buildings near architectural landmarks, provide an efficient and safe action plan in emergencies, and modernize existing construction technologies to enhance the comfort of residential buildings, office structures, and other socially significant facilities. It will also aid in selecting the most suitable locations for modern high-precision manufacturing plants.

  3. We study excitation of oscillations in the stochastic gene systems with time-delayed feedback loop during transcription. The oscillations arise due to interaction noise and time delay even when deterministic counterpart of the system exhibits stationary behaviour. This effect becomes important when degree-of-freedom of a system is not high, and role of fluctuations becomes principal. The analytical solution of master-equation is obtained. The results of numerical simulations are presented.

    Views (last year): 6. Citations: 12 (RSCI).
  4. Bashkirtseva I.A., Ekaterinchuk E.D., Ryazanova T.V., Sysolyatina A.A.
    Mathematical modeling of stochastic equilibria and business cycles of Goodwin model
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 107-118

    The Goodwin dynamical model under the random external disturbances is considered. A full parametrical analysis for equlibria and cycles of deterministic model is developed. We study probabilistic properties of stochastic attractors using stochastic sensitivity functions technique and numerical methods. A phenomenon of the generation of stochastic business cycles in the zones of stable equilibria is discussed.

    Views (last year): 5. Citations: 4 (RSCI).
  5. Ryashko L.B., Slepukhina E.S.
    Analysis of additive and parametric noise effects on Morris – Lecar neuron model
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 449-468

    This paper is devoted to the analysis of the effect of additive and parametric noise on the processes occurring in the nerve cell. This study is carried out on the example of the well-known Morris – Lecar model described by the two-dimensional system of ordinary differential equations. One of the main properties of the neuron is the excitability, i.e., the ability to respond to external stimuli with an abrupt change of the electric potential on the cell membrane. This article considers a set of parameters, wherein the model exhibits the class 2 excitability. The dynamics of the system is studied under variation of the external current parameter. We consider two parametric zones: the monostability zone, where a stable equilibrium is the only attractor of the deterministic system, and the bistability zone, characterized by the coexistence of a stable equilibrium and a limit cycle. We show that in both cases random disturbances result in the phenomenon of the stochastic generation of mixed-mode oscillations (i. e., alternating oscillations of small and large amplitudes). In the monostability zone this phenomenon is associated with a high excitability of the system, while in the bistability zone, it occurs due to noise-induced transitions between attractors. This phenomenon is confirmed by changes of probability density functions for distribution of random trajectories, power spectral densities and interspike intervals statistics. The action of additive and parametric noise is compared. We show that under the parametric noise, the stochastic generation of mixed-mode oscillations is observed at lower intensities than under the additive noise. For the quantitative analysis of these stochastic phenomena we propose and apply an approach based on the stochastic sensitivity function technique and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable limit cycle, this domain is a confidence band. The study of the mutual location of confidence bands and the boundary separating the basins of attraction for different noise intensities allows us to predict the emergence of noise-induced transitions. The effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimations with results of direct numerical simulations.

    Views (last year): 11.
  6. Lyubushin A.A., Farkov Y.A.
    Synchronous components of financial time series
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655

    The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.

    Views (last year): 12. Citations: 2 (RSCI).
  7. Lyubushin A.A., Kopylova G.N., Kasimova V.A., Taranova L.N.
    Multifractal and entropy statistics of seismic noise in Kamchatka in connection with the strongest earthquakes
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1507-1521

    The study of the properties of seismic noise in Kamchatka is based on the idea that noise is an important source of information about the processes preceding strong earthquakes. The hypothesis is considered that an increase in seismic hazard is accompanied by a simplification of the statistical structure of seismic noise and an increase in spatial correlations of its properties. The entropy of the distribution of squared wavelet coefficients, the width of the carrier of the multifractal singularity spectrum, and the Donoho – Johnstone index were used as statistics characterizing noise. The values of these parameters reflect the complexity: if a random signal is close in its properties to white noise, then the entropy is maximum, and the other two parameters are minimum. The statistics used are calculated for 6 station clusters. For each station cluster, daily median noise properties are calculated in successive 1-day time windows, resulting in an 18-dimensional (3 properties and 6 station clusters) time series of properties. To highlight the general properties of changes in noise parameters, a principal component method is used, which is applied for each cluster of stations, as a result of which the information is compressed into a 6-dimensional daily time series of principal components. Spatial noise coherences are estimated as a set of maximum pairwise quadratic coherence spectra between the principal components of station clusters in a sliding time window of 365 days. By calculating histograms of the distribution of cluster numbers in which the minimum and maximum values of noise statistics are achieved in a sliding time window of 365 days in length, the migration of seismic hazard areas was assessed in comparison with strong earthquakes with a magnitude of at least 7.

  8. Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

  9. Kurushina S.E., Fedorova E.A., Gurovskaia I.A.
    Technique for analyzing noise-induced phenomena in two-component stochastic systems of reaction – diffusion type with power nonlinearity
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291

    The paper constructs and studies a generalized model describing two-component systems of reaction – diffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reaction – diffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.

  10. Kolchev A.A., Nedopekin A.E.
    On one particular model of a mixture of the probability distributions in the radio measurements
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 563-568

    This paper presents a model mixture of probability distributions of signal and noise. Typically, when analyzing the data under conditions of uncertainty it is necessary to use nonparametric tests. However, such an analysis of nonstationary data in the presence of uncertainty on the mean of the distribution and its parameters may be ineffective. The model involves the implementation of a case of a priori non-parametric uncertainty in the processing of the signal at a time when the separation of signal and noise are related to different general population, is feasible.

    Views (last year): 3. Citations: 7 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"