All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Theoretical substantiation of the mathematical techniques for joint signal and noise estimation at rician data analysis
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 445-473Views (last year): 2. Citations: 2 (RSCI).The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.
-
Bicompact schemes for the HOLO algorithm for joint solution of the transport equation and the energy equation
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1429-1448The numerical solving of the system of high-temperature radiative gas dynamics (HTRGD) equations is a computationally laborious task, since the interaction of radiation with matter is nonlinear and non-local. The radiation absorption coefficients depend on temperature, and the temperature field is determined by both gas-dynamic processes and radiation transport. The method of splitting into physical processes is usually used to solve the HTRGD system, one of the blocks consists of a joint solving of the radiative transport equation and the energy balance equation of matter under known pressure and temperature fields. Usually difference schemes with orders of convergence no higher than the second are used to solve this block. Due to computer memory limitations it is necessary to use not too detailed grids to solve complex technical problems. This increases the requirements for the order of approximation of difference schemes. In this work, bicompact schemes of a high order of approximation for the algorithm for the joint solution of the radiative transport equation and the energy balance equation are implemented for the first time. The proposed method can be applied to solve a wide range of practical problems, as it has high accuracy and it is suitable for solving problems with coefficient discontinuities. The non-linearity of the problem and the use of an implicit scheme lead to an iterative process that may slowly converge. In this paper, we use a multiplicative HOLO algorithm named the quasi-diffusion method by V.Ya.Goldin. The key idea of HOLO algorithms is the joint solving of high order (HO) and low order (LO) equations. The high-order equation (HO) is the radiative transport equation solved in the energy multigroup approximation, the system of quasi-diffusion equations in the multigroup approximation (LO1) is obtained by averaging HO equations over the angular variable. The next step is averaging over energy, resulting in an effective one-group system of quasi-diffusion equations (LO2), which is solved jointly with the energy equation. The solutions obtained at each stage of the HOLO algorithm are closely related that ultimately leads to an acceleration of the convergence of the iterative process. Difference schemes constructed by the method of lines within one cell are proposed for each of the stages of the HOLO algorithm. The schemes have the fourth order of approximation in space and the third order of approximation in time. Schemes for the transport equation were developed by B.V. Rogov and his colleagues, the schemes for the LO1 and LO2 equations were developed by the authors. An analytical test is constructed to demonstrate the declared orders of convergence. Various options for setting boundary conditions are considered and their influence on the order of convergence in time and space is studied.
-
Control systems in Brunovsky form: symmetries, controllability
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 147-159Views (last year): 2.Many nonlinear control systems by nonsingular transformation variable {condition-control} happen to canonical Brunovsky form. The different questions dare in canonical form to theories of control, then inverse change variable is realized return to source variable. In work on base this ideology are studied transformations to symmetries space {time-condition-control}.
-
Numerical modeling of population 2D-dynamics with nonlocal interaction
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 33-40Views (last year): 3. Citations: 5 (RSCI).Numerical solutions for the two-dimensional reaction-diffusion equation with nonlocal nonlinearity are obtained. The solutions reveal formation of dissipative structures. Structures arising from initial distributions with one and several centers of localization are considered. Formation of extending circular structures is shown. Peculiarities of formation and interaction of extending circular structures depending on nonlocal interaction are considered.
-
Ray trajectories, binomial coefficients of a new type, and the binary system
Computer Research and Modeling, 2010, v. 2, no. 4, pp. 359-397Views (last year): 5. Citations: 1 (RSCI).The paper describes a new algorithm of construction of the nonlinear arithmetic triangle on the basis of numerical simulation and the binary system. It demonstrates that the numbers that fill the nonlinear arithmetic triangle may be binomial coefficients of a new type. An analogy has been drawn with the binomial coefficients calculated with the use of the Pascal triangle. The paper provides a geometrical interpretation of binomials of different types in considering the branching systems of rays.
-
Development, calibration and verification of mathematical model for multilane urban road traffic flow. Part I
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1185-1203Views (last year): 4. Citations: 2 (RSCI).In this paper, we propose the unified procedure for the development and calibration of mathematical model for multilane urban road traffic flow. We use macroscopic approach, describing traffic flow with the system of second-order nonlinear hyperbolic equations (for traffic density and velocity). We close the resulting model with the equation of vehicle flow as a function of density, obtained empirically for each segment of road network using data from traffic detectors and vehicles’ GPS tracks. We verify the developed new model and calibration methods by using it to model segment of Moscows Ring Road.
-
Traveling waves in a parabolic problem with a rotation on the circle
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 705-716Views (last year): 11. Citations: 5 (RSCI).Optical systems with two-dimensional feedback demonstrate wide possibilities for studying the nucleation and development processes of dissipative structures. Feedback allows to influence the dynamics of the optical system by controlling the transformation of spatial variables performed by prisms, lenses, dynamic holograms and other devices. A nonlinear interferometer with a mirror image of a field in two-dimensional feedback is one of the simplest optical systems in which is realized the nonlocal nature of light fields.
A mathematical model of optical systems with two-dimensional feedback is a nonlinear parabolic equation with rotation transformation of a spatial variable and periodicity conditions on a circle. Such problems are investigated: bifurcation of the traveling wave type stationary structures, how the form of the solution changes as the diffusion coefficient decreases, dynamics of the solution’s stability when the bifurcation parameter leaves the critical value. For the first time as a parameter bifurcation was taken of diffusion coefficient.
The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds allows to prove a theorem on the existence and form of the traveling wave type solution neighborhood of the bifurcation value. The first traveling wave born as a result of the Andronov –Hopf bifurcation in the transition of the bifurcation parameter through the сritical value. According to the central manifold theorem, the first traveling wave is born orbitally stable.
Since the above theorem gives the opportunity to explore solutions are born only in the vicinity of the critical values of the bifurcation parameter, the decision to study the dynamics of traveling waves of change during the withdrawal of the bifurcation parameter in the supercritical region, the formalism of the Galerkin method was used. In accordance with the method of the central manifold is made Galerkin’s approximation of the problem solution. As the bifurcation parameter decreases and its transition through the critical value, the zero solution of the problem loses stability in an oscillatory manner. As a result, a periodic solution of the traveling wave type branches off from the zero solution. This wave is born orbitally stable. With further reduction of the parameter and its passage through the next critical value from the zero solution, the second solution of the traveling wave type is produced as a result of the Andronov –Hopf bifurcation. This wave is born unstable with an instability index of two.
Numerical calculations have shown that the application of the Galerkin’s method leads to correct results. The results obtained are in good agreement with the results obtained by other authors and can be used to establish experiments on the study of phenomena in optical systems with feedback.
-
Investigation of Turing structures formation under the influence of wave instability
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 397-412Views (last year): 21.A classical for nonlinear dynamics model, Brusselator, is considered, being augmented by addition of a third variable, which plays the role of a fast-diffusing inhibitor. The model is investigated in one-dimensional case in the parametric domain, where two types of diffusive instabilities of system’s homogeneous stationary state are manifested: wave instability, which leads to spontaneous formation of autowaves, and Turing instability, which leads to spontaneous formation of stationary dissipative structures, or Turing structures. It is shown that, due to the subcritical nature of Turing bifurcation, the interaction of two instabilities in this system results in spontaneous formation of stationary dissipative structures already before the passage of Turing bifurcation. In response to different perturbations of spatially uniform stationary state, different stable regimes are manifested in the vicinity of the double bifurcation point in the parametric region under study: both pure regimes, which consist of either stationary or autowave dissipative structures; and mixed regimes, in which different modes dominate in different areas of the computational space. In the considered region of the parametric space, the system is multistable and exhibits high sensitivity to initial noise conditions, which leads to blurring of the boundaries between qualitatively different regimes in the parametric region. At that, even in the area of dominance of mixed modes with prevalence of Turing structures, the establishment of a pure autowave regime has significant probability. In the case of stable mixed regimes, a sufficiently strong local perturbation in the area of the computational space, where autowave mode is manifested, can initiate local formation of new stationary dissipative structures. Local perturbation of the stationary homogeneous state in the parametric region under investidation leads to a qualitatively similar map of established modes, the zone of dominance of pure autowave regimes being expanded with the increase of local perturbation amplitude. In two-dimensional case, mixed regimes turn out to be only transient — upon the appearance of localized Turing structures under the influence of wave regime, they eventually occupy all available space.
-
Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630Views (last year): 3.A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.
-
Application of the grid-characteristic method for mathematical modeling in dynamical problems of deformable solid mechanics
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1041-1048
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




