All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Constructing of linearly implicit schemes which are LN-equivalent to implicit Runge–Kutta methods
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 483-496Views (last year): 2. Citations: 2 (RSCI).New family of linearly implicit schemes are presented. This family allows to obtain methods which are equivalent to stiffly accurate implicit Runge–Kutta schemes (such as RadauIIA and LobattoIIIC) on nonautonomous linear problems. Notion of LN-equivalence of schemes is introduced. Order conditions and stability conditions of such methods are obtained with the use of media for computer symbolic calculations. Some examples of new schemes have been constructed. Numerical studying of new method have been done with the use of classical tests for stiff problems.
-
Numerical-analytical integrating the equations of a point mass projectile motion at the velocities close to sonic peak of air drag exponent
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 785-798It is shown that the relative air drag force for many different ballistic profiles obeys the law as follows R(V)=Mg·w(V/WT)n(V) with V being the velocity, WT — some threshold velocity close to that of sound, w equals to R(WT) and n(V) is the exponent in broken power Gȃvre formula. Using the Legendre transformation and in frames of perturbation approach received was the expression for addition δabb''(b) to resolvent function abb''(b), where a(b) is an intercept and b=tgθ, θ — inclination angle.
-
Numerical integration algorithm potentially-streaming equations in lumped parameters to control the correctness of the approximate solution
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 479-493Views (last year): 4. Citations: 3 (RSCI).This work is devoted to development of an algorithm for numerical integration of differential equations potentially-streaming method simulation of non-equilibrium processes. This method was developed by the author in his earlier published works. In this paper, consideration is limited to systems with lumped parameters. Also previously developed method for analyzing the correctness of the author of the approximate solution of the system potentially-streaming equations for systems in lumped parameters. The purpose of this article is to combine this technique with modern numerical methods for integrating systems of ordinary differential equations and the development of methods of numerical integration of systems of equations potentially-streaming method that allows to guarantee the correctness of the approximate solution.
-
Mathematical modeling of pulsating detonation wave using ENO-schemes of different approximation orders
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 643-653Views (last year): 4. Citations: 5 (RSCI).The results of the numerical investigations of pulsating detonation wave propagation using the ENO-schemes with the approximation orders from the first to the fourth inclusively are presented. The results obtained with the use of the schemes of different approximation orders demonstrate that the pattern of detonation wave propagation in acetylene-air mixture corresponds to the analytical estimates both qualitatively and quantitatively. For the hydrogen-air mixture none of the schemes concerned provides the stable detonation wave propagation. The transition from the regular mode to the marginal one with the subsequent detonation breakup is observed.
-
The implicit line-by-line recurrence method in application to the solution of problems of incompressible viscous fluid dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 35-50Views (last year): 3. Citations: 3 (RSCI).In the paper the results of applying the implicit line-by-line recurrence method for solving of systems of elliptic difference equations, arising, in particular, at numerical simulation of dynamics of incompressible viscous fluid are considered. Research is conducted on the example of the problem about a steady-state two-dimensional lid-driven cavity flow formulated in primitive variables ($u,\, v,\, p$) for large Re (up to 20 000) and grids (up to 2049×2049). High efficiency of the method at calculation of a pressure correction fields is demonstrated. The difficulties of constructing a solution of the problem for large Rе are analyzed.
-
Classification of dynamical switching regimes in a three-layered ferromagnetic nanopillar governed by spin-polarized injection current and external magnetic field. I. Longitudinal anisotropy
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 605-620Views (last year): 2. Citations: 6 (RSCI).The mathematical model of the magnetic memory cell MRAM with the in-plane anisotropy axis parallel to the edge of a free ferromagnetic layer (longitudinal anisotropy) has been constructed using approximation of uniform magnetization. The model is based on the Landau–Lifshits–Gilbert equation with the injection-current term in the Sloncžewski–Berger form. The set of ordinary differential equations for magnetization dynamics in a three-layered Co/Cu/Cu valve under the control of external magnetic field and spin-polarized current has been derived in the normal coordinate form. It was shown that the set of equations has two main stationary points on the anisotropy axis at any values of field and current. The stationary analysis of them has been performed. The algebraic equations for determination of additional stationary points have been derived. It has been shown that, depending on the field and current magnitude, the set of equations can have altogether two, four, or six stationary points symmetric in pairs relatively the anisotropy axis. The bifurcation diagrams for all the points have been constructed. The classification of the corresponding phase portraits has been performed. The typical trajectories were calculated numerically using Runge–Kutta method. The regions, where stable and unstable limit cycles exist, have been determined. It was found that the unstable limit cycles exist around the main stable equilibrium point on the axis that coincides with the anisotropy one, whereas the stable cycles surround the unstable additional points of equilibrium. The area of their existence was determined numerically. The new types of dynamics, such as accidental switching and non-complete switching, have been found. The threshold values of switching current and field have been obtained analytically. The estimations of switching times have been performed numerically.
-
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 721-753Views (last year): 9. Citations: 1 (RSCI).Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.
-
Direct multiplicative methods for sparse matrices. Unbalanced linear systems.
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 833-860Views (last year): 20. Citations: 2 (RSCI).Small practical value of many numerical methods for solving single-ended systems of linear equations with ill-conditioned matrices due to the fact that these methods in the practice behave quite differently than in the case of precise calculations. Historically, sustainability is not enough attention was given, unlike in numerical algebra ‘medium-sized’, and emphasis is given to solving the problems of maximal order in data capabilities of the computer, including the expense of some loss of accuracy. Therefore, the main objects of study is the most appropriate storage of information contained in the sparse matrix; maintaining the highest degree of rarefaction at all stages of the computational process. Thus, the development of efficient numerical methods for solving unstable systems refers to the actual problems of computational mathematics.
In this paper, the approach to the construction of numerically stable direct multiplier methods for solving systems of linear equations, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach consists in minimization of filling the main lines of the multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats. The storage format of sparse matrices has been studied and the advantage of this format consists in possibility of parallel execution any matrix operations without unboxing, which significantly reduces the execution time and memory footprint.
Direct multiplier methods for solving systems of linear equations are best suited for solving problems of large size on a computer — sparse matrix systems allow you to get multipliers, the main row of which is also sparse, and the operation of multiplication of a vector-row of the multiplier according to the complexity proportional to the number of nonzero elements of this multiplier.
As a direct continuation of this work is proposed in the basis for constructing a direct multiplier algorithm of linear programming to put a modification of the direct multiplier algorithm for solving systems of linear equations based on integration of technique of linear programming for methods to select the host item. Direct multiplicative methods of linear programming are best suited for the construction of a direct multiplicative algorithm set the direction of descent Newton methods in unconstrained optimization by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.
-
Direct multiplicative methods for sparse matrices. Linear programming
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 143-165Views (last year): 10. Citations: 2 (RSCI).Multiplicative methods for sparse matrices are best suited to reduce the complexity of operations solving systems of linear equations performed on each iteration of the simplex method. The matrix of constraints in these problems of sparsely populated nonzero elements, which allows to obtain the multipliers, the main columns which are also sparse, and the operation of multiplication of a vector by a multiplier according to the complexity proportional to the number of nonzero elements of this multiplier. In addition, the transition to the adjacent basis multiplier representation quite easily corrected. To improve the efficiency of such methods requires a decrease in occupancy multiplicative representation of the nonzero elements. However, at each iteration of the algorithm to the sequence of multipliers added another. As the complexity of multiplication grows and linearly depends on the length of the sequence. So you want to run from time to time the recalculation of inverse matrix, getting it from the unit. Overall, however, the problem is not solved. In addition, the set of multipliers is a sequence of structures, and the size of this sequence is inconvenient is large and not precisely known. Multiplicative methods do not take into account the factors of the high degree of sparseness of the original matrices and constraints of equality, require the determination of initial basic feasible solution of the problem and, consequently, do not allow to reduce the dimensionality of a linear programming problem and the regular procedure of compression — dimensionality reduction of multipliers and exceptions of the nonzero elements from all the main columns of multipliers obtained in previous iterations. Thus, the development of numerical methods for the solution of linear programming problems, which allows to overcome or substantially reduce the shortcomings of the schemes implementation of the simplex method, refers to the current problems of computational mathematics.
In this paper, the approach to the construction of numerically stable direct multiplier methods for solving problems in linear programming, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach is to reduce dimensionality and minimize filling of the main rows of multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats.
As a direct continuation of this work is the basis for constructing a direct multiplicative algorithm set the direction of descent in the Newton methods for unconstrained optimization is proposed to put a modification of the direct multiplier method, linear programming by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.
-
Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 2
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 547-566Views (last year): 6.The second part of paper is devoted to final study of three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Specificity of this solution has been shown by different examples, which are related to the hexagonal grid. Also the next statements that are mentioned in the first part have been proved: the matter conservation law and the offensive effect of excessive hexagonal symmetry.
From the point of CA view diffusion equation is the most important. While solving of diffusion equation at the infinite time interval we can find solution of boundary value problem of Laplace equation and if we introduce vector-variable we will solve wave equation (at least, for scalar). The critical requirement for the sampling of the boundary conditions for CA-cells has been shown during the solving of problem of circular membrane vibrations with Neumann boundary conditions. CA-calculations using the simple scheme and Margolus rotary-block mechanism were compared for the quasione-dimensional problem “diffusion in the half-space”. During the solving of mixed task of circular membrane vibration with the fixed ends in a classical case it has been shown that the simultaneous application of the Crank–Nicholson method and taking into account of the second-order terms is allowed to avoid the effect of excessive hexagonal symmetry that was studied for a simple scheme.
By the example of the centrally symmetric Neumann problem a new method of spatial derivatives introducing into the postfix CA procedure, which is reflecting the time derivatives (on the base of the continuity equation) was demonstrated. The value of the constant that is related to these derivatives has been empirically found in the case of central symmetry. The low rate of convergence and accuracy that limited within the boundaries of the sample, in contrary to the formal precision of the method (4-th order), prevents the using of the CAmethods for such problems. We recommend using multigrid method. During the solving of the quasi-diffusion equations (two-dimensional CA) it was showing that the rotary-block mechanism of CA (Margolus mechanism) is more effective than simple CA.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




