All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Designing a zero on a linear manifold, a polyhedron, and a vertex of a polyhedron. Newton methods of minimization
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 563-591Views (last year): 6.We consider the approaches to the construction of methods for solving four-dimensional programming problems for calculating directions for multiple minimizations of smooth functions on a set of a given set of linear equalities. The approach consists of two stages.
At the first stage, the problem of quadratic programming is transformed by a numerically stable direct multiplicative algorithm into an equivalent problem of designing the origin of coordinates on a linear manifold, which defines a new mathematical formulation of the dual quadratic problem. For this, a numerically stable direct multiplicative method for solving systems of linear equations is proposed, taking into account the sparsity of matrices presented in packaged form. The advantage of this approach is to calculate the modified Cholesky factors to construct a substantially positive definite matrix of the system of equations and its solution in the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made in the position of the next processed row of the matrix, which allows the use of static data storage formats.
At the second stage, the necessary and sufficient optimality conditions in the form of Kuhn–Tucker determine the calculation of the direction of descent — the solution of the dual quadratic problem is reduced to solving a system of linear equations with symmetric positive definite matrix for calculating of Lagrange's coefficients multipliers and to substituting the solution into the formula for calculating the direction of descent.
It is proved that the proposed approach to the calculation of the direction of descent by numerically stable direct multiplicative methods at one iteration requires a cubic law less computation than one iteration compared to the well-known dual method of Gill and Murray. Besides, the proposed method allows the organization of the computational process from any starting point that the user chooses as the initial approximation of the solution.
Variants of the problem of designing the origin of coordinates on a linear manifold, a convex polyhedron and a vertex of a convex polyhedron are presented. Also the relationship and implementation of methods for solving these problems are described.
-
Direct multiplicative methods for sparse matrices. Unbalanced linear systems.
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 833-860Views (last year): 20. Citations: 2 (RSCI).Small practical value of many numerical methods for solving single-ended systems of linear equations with ill-conditioned matrices due to the fact that these methods in the practice behave quite differently than in the case of precise calculations. Historically, sustainability is not enough attention was given, unlike in numerical algebra ‘medium-sized’, and emphasis is given to solving the problems of maximal order in data capabilities of the computer, including the expense of some loss of accuracy. Therefore, the main objects of study is the most appropriate storage of information contained in the sparse matrix; maintaining the highest degree of rarefaction at all stages of the computational process. Thus, the development of efficient numerical methods for solving unstable systems refers to the actual problems of computational mathematics.
In this paper, the approach to the construction of numerically stable direct multiplier methods for solving systems of linear equations, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach consists in minimization of filling the main lines of the multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats. The storage format of sparse matrices has been studied and the advantage of this format consists in possibility of parallel execution any matrix operations without unboxing, which significantly reduces the execution time and memory footprint.
Direct multiplier methods for solving systems of linear equations are best suited for solving problems of large size on a computer — sparse matrix systems allow you to get multipliers, the main row of which is also sparse, and the operation of multiplication of a vector-row of the multiplier according to the complexity proportional to the number of nonzero elements of this multiplier.
As a direct continuation of this work is proposed in the basis for constructing a direct multiplier algorithm of linear programming to put a modification of the direct multiplier algorithm for solving systems of linear equations based on integration of technique of linear programming for methods to select the host item. Direct multiplicative methods of linear programming are best suited for the construction of a direct multiplicative algorithm set the direction of descent Newton methods in unconstrained optimization by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.
-
Direct multiplicative methods for sparse matrices. Linear programming
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 143-165Views (last year): 10. Citations: 2 (RSCI).Multiplicative methods for sparse matrices are best suited to reduce the complexity of operations solving systems of linear equations performed on each iteration of the simplex method. The matrix of constraints in these problems of sparsely populated nonzero elements, which allows to obtain the multipliers, the main columns which are also sparse, and the operation of multiplication of a vector by a multiplier according to the complexity proportional to the number of nonzero elements of this multiplier. In addition, the transition to the adjacent basis multiplier representation quite easily corrected. To improve the efficiency of such methods requires a decrease in occupancy multiplicative representation of the nonzero elements. However, at each iteration of the algorithm to the sequence of multipliers added another. As the complexity of multiplication grows and linearly depends on the length of the sequence. So you want to run from time to time the recalculation of inverse matrix, getting it from the unit. Overall, however, the problem is not solved. In addition, the set of multipliers is a sequence of structures, and the size of this sequence is inconvenient is large and not precisely known. Multiplicative methods do not take into account the factors of the high degree of sparseness of the original matrices and constraints of equality, require the determination of initial basic feasible solution of the problem and, consequently, do not allow to reduce the dimensionality of a linear programming problem and the regular procedure of compression — dimensionality reduction of multipliers and exceptions of the nonzero elements from all the main columns of multipliers obtained in previous iterations. Thus, the development of numerical methods for the solution of linear programming problems, which allows to overcome or substantially reduce the shortcomings of the schemes implementation of the simplex method, refers to the current problems of computational mathematics.
In this paper, the approach to the construction of numerically stable direct multiplier methods for solving problems in linear programming, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach is to reduce dimensionality and minimize filling of the main rows of multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats.
As a direct continuation of this work is the basis for constructing a direct multiplicative algorithm set the direction of descent in the Newton methods for unconstrained optimization is proposed to put a modification of the direct multiplier method, linear programming by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.
-
On some stochastic mirror descent methods for constrained online optimization problems
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 205-217Views (last year): 42.The problem of online convex optimization naturally occurs in cases when there is an update of statistical information. The mirror descent method is well known for non-smooth optimization problems. Mirror descent is an extension of the subgradient method for solving non-smooth convex optimization problems in the case of a non-Euclidean distance. This paper is devoted to a stochastic variant of recently proposed Mirror Descent methods for convex online optimization problems with convex Lipschitz (generally, non-smooth) functional constraints. This means that we can still use the value of the functional constraint, but instead of (sub)gradient of the objective functional and the functional constraint, we use their stochastic (sub)gradients. More precisely, assume that on a closed subset of $n$-dimensional vector space, $N$ convex Lipschitz non-smooth functionals are given. The problem is to minimize the arithmetic mean of these functionals with a convex Lipschitz constraint. Two methods are proposed, for solving this problem, using stochastic (sub)gradients: adaptive method (does not require knowledge of Lipschitz constant neither for the objective functional, nor for the functional of constraint) and non-adaptivemethod (requires knowledge of Lipschitz constant for the objective functional and the functional of constraint). Note that it is allowed to calculate the stochastic (sub)gradient of each functional only once. In the case of non-negative regret, we find that the number of non-productive steps is $O$($N$), which indicates the optimality of the proposed methods. We consider an arbitrary proximal structure, which is essential for decisionmaking problems. The results of numerical experiments are presented, allowing to compare the work of adaptive and non-adaptive methods for some examples. It is shown that the adaptive method can significantly improve the number of the found solutions.
-
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Methods for resolving the Braess paradox in the presence of autonomous vehicles
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 281-294Roads are a shared resource which can be used either by drivers and autonomous vehicles. Since the total number of vehicles increases annually, each considered vehicle spends more time in traffic jams, and thus the total travel time prolongs. The main purpose while planning the road system is to reduce the time spent on traveling. The optimization of transportation networks is a current goal, thus the formation of traffic flows by creating certain ligaments of the roads is of high importance. The Braess paradox states the existence of a network where the construction of a new edge leads to the increase of traveling time. The objective of this paper is to propose various solutions to the Braess paradox in the presence of autonomous vehicles. One of the methods of solving transportation topology problems is to introduce artificial restrictions on traffic. As an example of such restrictions, this article considers designated lanes which are available only for a certain type of vehicles. Designated lanes have their own location in the network and operating conditions. This article observes the most common two-roads traffic situations, analyzes them using analytical and numerical methods and presents the model of optimal traffic flow distribution, which considers different ways of lanes designation on isolated transportation networks. It was found that the modeling of designated lanes eliminates Braess’ paradox and optimizes the total traveling time. The solutions were shown on artificial networks and on the real-life example. A modeling algorithm for Braess network was proposed and its correctness was verified using the real-life example.
-
Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 9-22The paper presents a numerical solution to the heat wave motion problem for a degenerate second-order nonlinear parabolic equation with a source term. The nonlinearity is conditioned by the power dependence of the heat conduction coefficient on temperature. The problem for the case of two spatial variables is considered with the boundary condition specifying the heat wave motion law. A new solution algorithm based on an expansion in radial basis functions and the boundary element method is proposed. The solution is constructed stepwise in time with finite difference time approximation. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is solved. The solution to this problem is constructed iteratively as the sum of a particular solution to the nonhomogeneous equation and a solution to the corresponding homogeneous equation satisfying the boundary conditions. The homogeneous equation is solved by the boundary element method. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The calculation algorithm is optimized by parallelizing the computations. The algorithm is implemented as a program written in the C++ language. The parallel computations are organized by using the OpenCL standard, and this allows one to run the same parallel code either on multi-core CPUs or on graphic CPUs. Test cases are solved to evaluate the effectiveness of the proposed solution method and the correctness of the developed computational technique. The calculation results are compared with known exact solutions, as well as with the results we obtained earlier. The accuracy of the solutions and the calculation time are estimated. The effectiveness of using various systems of radial basis functions to solve the problems under study is analyzed. The most suitable system of functions is selected. The implemented complex computational experiment shows higher calculation accuracy of the proposed new algorithm than that of the previously developed one.
-
The iterations’ number estimation for strongly polynomial linear programming algorithms
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 249-285A direct algorithm for solving a linear programming problem (LP), given in canonical form, is considered. The algorithm consists of two successive stages, in which the following LP problems are solved by a direct method: a non-degenerate auxiliary problem at the first stage and some problem equivalent to the original one at the second. The construction of the auxiliary problem is based on a multiplicative version of the Gaussian exclusion method, in the very structure of which there are possibilities: identification of incompatibility and linear dependence of constraints; identification of variables whose optimal values are obviously zero; the actual exclusion of direct variables and the reduction of the dimension of the space in which the solution of the original problem is determined. In the process of actual exclusion of variables, the algorithm generates a sequence of multipliers, the main rows of which form a matrix of constraints of the auxiliary problem, and the possibility of minimizing the filling of the main rows of multipliers is inherent in the very structure of direct methods. At the same time, there is no need to transfer information (basis, plan and optimal value of the objective function) to the second stage of the algorithm and apply one of the ways to eliminate looping to guarantee final convergence.
Two variants of the algorithm for solving the auxiliary problem in conjugate canonical form are presented. The first one is based on its solution by a direct algorithm in terms of the simplex method, and the second one is based on solving a problem dual to it by the simplex method. It is shown that both variants of the algorithm for the same initial data (inputs) generate the same sequence of points: the basic solution and the current dual solution of the vector of row estimates. Hence, it is concluded that the direct algorithm is an algorithm of the simplex method type. It is also shown that the comparison of numerical schemes leads to the conclusion that the direct algorithm allows to reduce, according to the cubic law, the number of arithmetic operations necessary to solve the auxiliary problem, compared with the simplex method. An estimate of the number of iterations is given.
-
Analytical solution and computer simulation of the task of Rician distribution’s parameters in limiting cases of large and small values of signal-to-noise ratio
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 227-242Views (last year): 2.The paper provides a solution of a task of calculating the parameters of a Rician distributed signal on the basis of the maximum likelihood principle in limiting cases of large and small values of the signal-tonoise ratio. The analytical formulas are obtained for the solution of the maximum likelihood equations’ system for the required signal and noise parameters for both the one-parameter approximation, when only one parameter is being calculated on the assumption that the second one is known a-priori, and for the two-parameter task, when both parameters are a-priori unknown. The direct calculation of required signal and noise parameters by formulas allows escaping the necessity of time resource consuming numerical solving the nonlinear equations’ s system and thus optimizing the duration of computer processing of signals and images. There are presented the results of computer simulation of a task confirming the theoretical conclusions. The task is meaningful for the purposes of Rician data processing, in particular, magnetic-resonance visualization.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




