Результаты поиска по 'numerical optimization':
Найдено статей: 81
  1. Reshitko M.A., Usov A.B.
    Neural network methods for optimal control problems
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 539-557

    In this study we discuss methods to solve optimal control problems based on neural network techniques. We study hierarchical dynamical two-level system for surface water quality control. The system consists of a supervisor (government) and a few agents (enterprises). We consider this problem from the point of agents. In this case we solve optimal control problem with constraints. To solve this problem, we use Pontryagin’s maximum principle, with which we obtain optimality conditions. To solve emerging ODEs, we use feedforward neural network. We provide a review of existing techniques to study such problems and a review of neural network’s training methods. To estimate the error of numerical solution, we propose to use defect analysis method, adapted for neural networks. This allows one to get quantitative error estimations of numerical solution. We provide examples of our method’s usage for solving synthetic problem and a surface water quality control model. We compare the results of this examples with known solution (when provided) and the results of shooting method. In all cases the errors, estimated by our method are of the same order as the errors compared with known solution. Moreover, we study surface water quality control problem when no solutions is provided by other methods. This happens because of relatively large time interval and/or the case of several agents. In the latter case we seek Nash equilibrium between agents. Thus, in this study we show the ability of neural networks to solve various problems including optimal control problems and differential games and we show the ability of quantitative estimation of an error. From the numerical results we conclude that the presence of the supervisor is necessary for achieving the sustainable development.

  2. Akindinov G.D., Matyukhin V.V., Krivorotko O.I.
    Numerical solving of an inverse problem of a hyperbolic heat equation with small parameter
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 245-258

    In this paper we describe an algorithm of numerical solving of an inverse problem on a hyperbolic heat equation with additional second time derivative with a small parameter. The problem in this case is finding an initial distribution with given final distribution. This algorithm allows finding a solution to the problem for any admissible given precision. Algorithm allows evading difficulties analogous to the case of heat equation with inverted time. Furthermore, it allows finding an optimal grid size by learning on a relatively big grid size and small amount of iterations of a gradient method and later extrapolates to the required grid size using Richardson’s method. This algorithm allows finding an adequate estimate of Lipschitz constant for the gradient of the target functional. Finally, this algorithm may easily be applied to the problems with similar structure, for example in solving equations for plasma, social processes and various biological problems. The theoretical novelty of the paper consists in the developing of an optimal procedure of finding of the required grid size using Richardson extrapolations for optimization problems with inexact gradient in ill-posed problems.

  3. Khudhur H.M., Halil I.H.
    Noise removal from images using the proposed three-term conjugate gradient algorithm
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 841-853

    Conjugate gradient algorithms represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and simple memory requirements. These algorithms have advantages that place them between the steep regression method and Newton’s algorithm because they require calculating the first derivatives only and do not require calculating and storing the second derivatives that Newton’s algorithm needs. They are also faster than the steep descent algorithm, meaning that they have overcome the slow convergence of this algorithm, and it does not need to calculate the Hessian matrix or any of its approximations, so it is widely used in optimization applications. This study proposes a novel method for image restoration by fusing the convex combination method with the hybrid (CG) method to create a hybrid three-term (CG) algorithm. Combining the features of both the Fletcher and Revees (FR) conjugate parameter and the hybrid Fletcher and Revees (FR), we get the search direction conjugate parameter. The search direction is the result of concatenating the gradient direction, the previous search direction, and the gradient from the previous iteration. We have shown that the new algorithm possesses the properties of global convergence and descent when using an inexact search line, relying on the standard Wolfe conditions, and using some assumptions. To guarantee the effectiveness of the suggested algorithm and processing image restoration problems. The numerical results of the new algorithm show high efficiency and accuracy in image restoration and speed of convergence when used in image restoration problems compared to Fletcher and Revees (FR) and three-term Fletcher and Revees (TTFR).

  4. Zhitnukhin N.A., Zhadan A.Y., Kondratov I.V., Allahverdyan A.L., Granichin O.N., Petrosian O.L., Romanovskii A.V., Kharin V.S.
    Multi-agent local voting protocol for online DAG scheduling
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 29-44

    Scheduling computational workflows represented by directed acyclic graphs (DAGs) is crucial in many areas of computer science, such as cloud/edge tasks with distributed workloads and data mining. The complexity of online DAG scheduling is compounded by the large number of computational nodes, data transfer delays, heterogeneity (by type and processing power) of executors, precedence constraints imposed by DAG, and the nonuniform arrival of tasks. This paper introduces the Multi-Agent Local Voting Protocol (MLVP), a novel approach focused on dynamic load balancing for DAG scheduling in heterogeneous computing environments, where executors are represented as agents. The MLVP employs a local voting protocol to achieve effective load distribution by formulating the problem as a differentiated consensus achievement. The algorithm calculates an aggregated DAG metric for each executor-node pair based on node dependencies, node availability, and executor performance. The balance of these metrics as a weighted sum is optimized using a genetic algorithm to assign tasks probabilistically, achieving efficient workload distribution via information sharing and reaching consensus among the executors across the system and thus improving makespan. The effectiveness of the MLVP is demonstrated through comparisons with the state-of-the-art DAG scheduling algorithm and popular heuristics such as DONF, FIFO, Min- Min, and Max-Min. Numerical simulations show that MLVP achieves makepsan improvements of up to 70% on specific graph topologies and an average makespan reduction of 23.99% over DONF (state-of-the-art DAG scheduling heuristic) across randomly generated diverse set of DAGs. Notably, the algorithm’s scalability is evidenced by enhanced performance with increasing numbers of executors and graph nodes.

  5. Belotelov V.N., Daryina A.N.
    Tangent search method in time optimal problem for a wheeled mobile robot
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 401-421

    Searching optimal trajectory of motion is a complex problem that is investigated in many research studies. Most of the studies investigate methods that are applicable to such a problem in general, regardless of the model of the object. With such general approach, only numerical solution can be found. However, in some cases it is possible to find an optimal trajectory in a closed form. Current article considers a time optimal problem with state limitations for a wheeled mobile differential robot that moves on a horizontal plane. The mathematical model of motion is kinematic. The state constraints correspond to the obstacles on the plane defined as circles that need to be avoided during motion. The independent control inputs are the wheel speeds that are limited in absolute value. Such model is commonly used in problems where the transients are considered insignificant, for example, when controlling tracked or wheeled devices that move slowly, prioritizing traction power over speed. In the article it is shown that the optimal trajectory from the starting point to the finishing point in such kinematic approach is a sequence of straight segments of tangents to the obstacles and arcs of the circles that limit the obstacles. The geometrically shortest path between the start and the finish is also a sequence of straight lines and arcs, therefore the time-optimal trajectory corresponds to one of the local minima when searching for the shortest path. The article proposes a method of search for the time-optimal trajectory based on building a graph of possible trajectories, where the edges are the possible segments of the tajectory, and the vertices are the connections between them. The optimal path is sought using Dijkstra’s algorithm. The theoretical foundation of the method is given, and the results of computer investigation of the algorithm are provided.

  6. Sviridenko A.B.
    The correction to Newton's methods of optimization
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 835-863

    An approach to the decrease of norm of the correction in Newton’s methods of optimization, based on the Cholesky’s factorization is presented, which is based on the integration with the technique of the choice of leading element of algorithm of linear programming as a method of solving the system of equations. We investigate the issues of increasing of the numerical stability of the Cholesky’s decomposition and the Gauss’ method of exception.

    Views (last year): 1. Citations: 6 (RSCI).
  7. Mikhailenko S.A., Sheremet M.A.
    Simulation of convective-radiative heat transfer in a differentially heated rotating cavity
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 195-207

    Mathematical simulation of unsteady natural convection and thermal surface radiation within a rotating square enclosure was performed. The considered domain of interest had two isothermal opposite walls subjected to constant low and high temperatures, while other walls are adiabatic. The walls were diffuse and gray. The considered cavity rotated with constant angular velocity relative to the axis that was perpendicular to the cavity and crossed the cavity in the center. Mathematical model, formulated in dimensionless transformed variables “stream function – vorticity” using the Boussinesq approximation and diathermic approach for the medium, was performed numerically using the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. Radiative heat transfer was analyzed using the net-radiation method in Poljak approach. The developed computational code was tested using the grid independence analysis and experimental and numerical results for the model problem.

    Numerical analysis of unsteady natural convection and thermal surface radiation within the rotating enclosure was performed for the following parameters: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. All distributions were obtained for the twentieth complete revolution when one can find the periodic behavior of flow and heat transfer. As a result we revealed that at low angular velocity the convective flow can intensify but the following growth of angular velocity leads to suppression of the convective flow. The radiative Nusselt number changes weakly with the Taylor number.

    Views (last year): 20.
  8. Stonyakin F.S., Stepanov A.N., Gasnikov A.V., Titov A.A.
    Mirror descent for constrained optimization problems with large subgradient values of functional constraints
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 301-317

    The paper is devoted to the problem of minimization of the non-smooth functional $f$ with a non-positive non-smooth Lipschitz-continuous functional constraint. We consider the formulation of the problem in the case of quasi-convex functionals. We propose new strategies of step-sizes and adaptive stopping rules in Mirror Descent for the considered class of problems. It is shown that the methods are applicable to the objective functionals of various levels of smoothness. Applying a special restart technique to the considered version of Mirror Descent there was proposed an optimal method for optimization problems with strongly convex objective functionals. Estimates of the rate of convergence for the considered methods are obtained depending on the level of smoothness of the objective functional. These estimates indicate the optimality of the considered methods from the point of view of the theory of lower oracle bounds. In particular, the optimality of our approach for Höldercontinuous quasi-convex (sub)differentiable objective functionals is proved. In addition, the case of a quasiconvex objective functional and functional constraint was considered. In this paper, we consider the problem of minimizing a non-smooth functional $f$ in the presence of a Lipschitz-continuous non-positive non-smooth functional constraint $g$, and the problem statement in the cases of quasi-convex and strongly (quasi-)convex functionals is considered separately. The paper presents numerical experiments demonstrating the advantages of using the considered methods.

  9. Ivanova A.S., Omelchenko S.S., Kotliarova E.V., Matyukhin V.V.
    Calibration of model parameters for calculating correspondence matrix for Moscow
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 961-978

    In this paper, we consider the problem of restoring the correspondence matrix based on the observations of real correspondences in Moscow. Following the conventional approach [Gasnikov et al., 2013], the transport network is considered as a directed graph whose edges correspond to road sections and the graph vertices correspond to areas that the traffic participants leave or enter. The number of city residents is considered constant. The problem of restoring the correspondence matrix is to calculate all the correspondence from the $i$ area to the $j$ area.

    To restore the matrix, we propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. In our work, which is based on the work [Wilson, 1978], we describe the evolutionary justification of the entropy model and the main idea of the transition to solving the problem of entropy-linear programming (ELP) in calculating the correspondence matrix. To solve the ELP problem, it is proposed to pass to the dual problem. In this paper, we describe several numerical optimization methods for solving this problem: the Sinkhorn method and the Accelerated Sinkhorn method. We provide numerical experiments for the following variants of cost functions: a linear cost function and a superposition of the power and logarithmic cost functions. In these functions, the cost is a combination of average time and distance between areas, which depends on the parameters. The correspondence matrix is calculated for multiple sets of parameters and then we calculate the quality of the restored matrix relative to the known correspondence matrix.

    We assume that the noise in the restored correspondence matrix is Gaussian, as a result, we use the standard deviation as a quality metric. The article provides an overview of gradient-free optimization methods for solving non-convex problems. Since the number of parameters of the cost function is small, we use the grid search method to find the optimal parameters of the cost function. Thus, the correspondence matrix calculated for each set of parameters and then the quality of the restored matrix is evaluated relative to the known correspondence matrix. Further, according to the minimum residual value for each cost function, we determine for which cost function and at what parameter values the restored matrix best describes real correspondence.

  10. Nefedova O.A., Spevak L.P., Kazakov A.L., Lee M.G.
    Solution to a two-dimensional nonlinear heat equation using null field method
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467

    The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"