Результаты поиска по 'predictability':
Найдено статей: 92
  1. Mitin A.L., Kalashnikov S.V., Yankovskiy E.A., Aksenov A.A., Zhluktov S.V., Chernyshev S.A.
    Methodical questions of numerical simulation of external flows on locally-adaptive grids using wall functions
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1269-1290

    The work is dedicated to investigation of possibility to increase the efficiency of solving external aerodynamic problems. Methodical questions of using locally-adaptive grids and wall functions for numerical simulation of turbulent flows past flying vehicles are studied. Reynolds-averaged Navier–Stokes equations are integrated. The equations are closed by standard $k–\varepsilon$ turbulence model. Subsonic turbulent flow of perfect compressible viscous gas past airfoil RAE 2822 is considered. Calculations are performed in CFD software FlowVision. The efficiency of using the technology of smoothing diffusion fluxes and the Bradshaw formula for turbulent viscosity is analyzed. These techniques are regarded as means of increasing the accuracy of solving aerodynamic problems on locally-adaptive grids. The obtained results show that using the technology of smoothing diffusion fluxes essentially decreases the discrepancy between computed and experimental values of the drag coefficient. In addition, the distribution of the skin friction coefficient over the curvilinear surface of the airfoil becomes more regular. These results indicate that the given technology is an effective way to increase the accuracy of calculations on locally-adaptive grids. The Bradshaw formula for the dynamic coefficient of turbulent viscosity is traditionally used in the SST $k–\omega$ turbulence model. The possibility to implement it in the standard $k–\varepsilon$ turbulence model is investigated in the present article. The calculations show that this formula provides good agreement of integral aerodynamic characteristics and the distribution of the pressure coefficient over the airfoil surface with experimental data. Besides that, it essentially augments the accuracy of simulation of the flow in the boundary layer and in the wake. On the other hand, using the Bradshaw formula in the simulation of the air flow past airfoil RAE 2822 leads to under-prediction of the skin friction coefficient. For this reason, the conclusion is made that practical use of the Bradshaw formula requires its preliminary validation and calibration on reliable experimental data available for the considered flows. The results of the work as a whole show that using the technologies discussed in numerical solution of external aerodynamic problems on locally-adaptive grids together with wall functions provides the computational accuracy acceptable for quick assessment of the aerodynamic characteristics of a flying vehicle. So, one can deduce that the FlowVision software is an effective tool for preliminary design studies, for conceptual design, and for aerodynamic shape optimization.

  2. Ahmad U., Ivanov V.
    Automating high-quality concept banks: leveraging LLMs and multimodal evaluation metrics
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1555-1567

    Interpretability in recent deep learning models has become an epicenter of research particularly in sensitive domains such as healthcare, and finance. Concept bottleneck models have emerged as a promising approach for achieving transparency and interpretability by leveraging a set of humanunderstandable concepts as an intermediate representation before the prediction layer. However, manual concept annotation is discouraged due to the time and effort involved. Our work explores the potential of large language models (LLMs) for generating high-quality concept banks and proposes a multimodal evaluation metric to assess the quality of generated concepts. We investigate three key research questions: the ability of LLMs to generate concept banks comparable to existing knowledge bases like ConceptNet, the sufficiency of unimodal text-based semantic similarity for evaluating concept-class label associations, and the effectiveness of multimodal information in quantifying concept generation quality compared to unimodal concept-label semantic similarity. Our findings reveal that multimodal models outperform unimodal approaches in capturing concept-class label similarity. Furthermore, our generated concepts for the CIFAR-10 and CIFAR-100 datasets surpass those obtained from ConceptNet and the baseline comparison, demonstrating the standalone capability of LLMs in generating highquality concepts. Being able to automatically generate and evaluate high-quality concepts will enable researchers to quickly adapt and iterate to a newer dataset with little to no effort before they can feed that into concept bottleneck models.

  3. Efficiency of production directly depends on quality of the management of technology which, in turn, relies on the accuracy and efficiency of the processing of control and measuring information. Development of the mathematical methods of research of the system communications and regularities of functioning and creation of the mathematical models taking into account structural features of object of researches, and also writing of the software products for realization of these methods are an actual task. Practice has shown that the list of parameters that take place in the study of complex object of modern production, ranging from a few dozen to several hundred names, and the degree of influence of each factor in the initial time is not clear. Before working for the direct determination of the model in these circumstances, it is impossible — the amount of the required information may be too great, and most of the work on the collection of this information will be done in vain due to the fact that the degree of influence on the optimization of most factors of the original list would be negligible. Therefore, a necessary step in determining a model of a complex object is to work to reduce the dimension of the factor space. Most industrial plants are hierarchical group processes and mass volume production, characterized by hundreds of factors. (For an example of realization of the mathematical methods and the approbation of the constructed models data of the Moldavian steel works were taken in a basis.) To investigate the systemic linkages and patterns of functioning of such complex objects are usually chosen several informative parameters, and carried out their sampling. In this article the sequence of coercion of the initial indices of the technological process of the smelting of steel to the look suitable for creation of a mathematical model for the purpose of prediction is described. The implementations of new types became also creation of a basis for development of the system of automated management of quality of the production. In the course of weak correlation the following stages are selected: collection and the analysis of the basic data, creation of the table the correlated of the parameters, abbreviation of factor space by means of the correlative pleiads and a method of weight factors. The received results allow to optimize process of creation of the model of multiple-factor process.

    Views (last year): 6. Citations: 1 (RSCI).
  4. Grachev V.A., Nayshtut Yu.S.
    Buckling problems of thin elastic shells
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 775-787

    The article covers several mathematical problems relating to elastic stability of thin shells in view of inconsistencies that have been recently identified between the experimental data and the predictions based on the shallow- shell theory. It is highlighted that the contradictions were caused by new algorithms that enabled updating the values of the so called “low critical stresses” calculated in the 20th century and adopted as a buckling criterion for thin shallow shells by technical standards. The new calculations often find the low critical stress close to zero. Therefore, the low critical stress cannot be used as a safety factor for the buckling analysis of the thinwalled structure, and the equations of the shallow-shell theory need to be replaced with other differential equations. The new theory also requires a buckling criterion ensuring the match between calculations and experimental data.

    The article demonstrates that the contradiction with the new experiments can be resolved within the dynamic nonlinear three-dimensional theory of elasticity. The stress when bifurcation of dynamic modes occurs shall be taken as a buckling criterion. The nonlinear form of original equations causes solitary (solitonic) waves that match non-smooth displacements (patterns, dents) of the shells. It is essential that the solitons make an impact at all stages of loading and significantly increase closer to bifurcation. The solitonic solutions are illustrated based on the thin cylindrical momentless shell when its three-dimensional volume is simulated with twodimensional surface of the set thickness. It is noted that the pattern-generating waves can be detected (and their amplitudes can by identified) with acoustic or electromagnetic devices.

    Thus, it is technically possible to reduce the risk of failure of the thin shells by monitoring the shape of the surface with acoustic devices. The article concludes with a setting of the mathematical problems requiring the solution for the reliable numerical assessment of the buckling criterion for thin elastic shells.

    Views (last year): 23.
  5. Gaber M.I., Nechaevskiy A.V.
    Development of advanced intrusion detection approach using machine and ensemble learning for industrial internet of things networks
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 799-827

    The Industrial Internet of Things (IIoT) networks plays a significant role in enhancing industrial automation systems by connecting industrial devices for real time data monitoring and predictive maintenance. However, this connectivity introduces new vulnerabilities which demand the development of advanced intrusion detection systems. The nuclear facilities are considered one of the closest examples of critical infrastructures that suffer from high vulnerability through the connectivity of IIoT networks. This paper develops a robust intrusion detection approach using machine and ensemble learning algorithms specifically determined for IIoT networks. This approach can achieve optimal performance with low time complexity suitable for real-time IIoT networks. For each algorithm, Grid Search is determined to fine-tune the hyperparameters for optimizing the performance while ensuring time computational efficiency. The proposed approach is investigated on recent IIoT intrusion detection datasets, WUSTL-IIOT-2021 and Edge-IIoT-2022 to cover a wider range of attacks with high precision and minimum false alarms. The study provides the effectiveness of ten machine and ensemble learning models on selected features of the datasets. Synthetic Minority Over-sampling Technique (SMOTE)-based multi-class balancing is used to manipulate dataset imbalances. The ensemble voting classifier is used to combine the best models with the best hyperparameters for raising their advantages to improve the performance with the least time complexity. The machine and ensemble learning algorithms are evaluated based on accuracy, precision, recall, F1 Score, and time complexity. This evaluation can discriminate the most suitable candidates for further optimization. The proposed approach is called the XCL approach that is based on Extreme Gradient Boosting (XGBoost), CatBoost (Categorical Boosting), and Light Gradient- Boosting Machine (LightGBM). It achieves high accuracy, lower false positive rate, and efficient time complexity. The results refer to the importance of ensemble strategies, algorithm selection, and hyperparameter optimization in enhancing the performance to detect the different intrusions across the IIoT datasets over the other models. The developed approach produced a higher accuracy of 99.99% on the WUSTL-IIOT-2021 dataset and 100% on the Edge-IIoTset dataset. Our experimental evaluations have been extended to the CIC-IDS-2017 dataset. These additional evaluations not only highlight the applicability of the XCL approach on a wide spectrum of intrusion detection scenarios but also confirm its scalability and effectiveness in real-world complex network environments.

  6. Ivankov A.A., Finchenko V.S.
    Numerical study of thermal destruction of the ”Chelyabinsk” meteorite when entering the Earth’s atmosphere
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 941-956

    A mathematical model for the numerical study of thermal destruction of the "Chelyabinsk" meteorite when entering the Earth’s atmosphere is presented in the article. The study was conducted in the framework of an integrated approach, including the calculation of the meteorite trajectory associated with the physical processes connected with the meteorite motion. Together with the trajectory the flow field and radiation-convective heat
    transfer were determined as well as warming and destruction of the meteorite under the influence of the calculated heat load. An integrated approach allows to determine the trajectories of space objects more precisely, predict the area of their fall and destruction.

    Citations: 4 (RSCI).
  7. Dudarov S.P., Diev A.N., Fedosova N.A., Koltsova E.M.
    Simulation of properties of composite materials reinforced by carbon nanotubes using perceptron complexes
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 253-262

    Use of algorithms based on neural networks can be inefficient for small amounts of experimental data. Authors consider a solution of this problem in the context of modelling of properties of ceramic composite materials reinforced with carbon nanotubes using perceptron complex. This approach allowed us to obtain a mathematical description of the object of study with a minimal amount of input data (the amount of necessary experimental samples decreased 2–3.3 times). Authors considered different versions of perceptron complex structures. They found that the most appropriate structure has perceptron complex with breakthrough of two input variables. The relative error was only 6%. The selected perceptron complex was shown to be effective for predicting the properties of ceramic composites. The relative errors for output components were 0.3%, 4.2%, 0.4%, 2.9%, and 11.8%.

    Views (last year): 2. Citations: 1 (RSCI).
  8. Scherbakov A.V.
    Economy of Chernavskii
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 397-417

    The present article sets out the scientific approach of Dmitry Sergeevich Chernavskii to the modelling of economic processes. It recounts the history of works of Dmitry Sergeyevich on the economic front, its milestones and achievements. One of the most important advances in the economic analysis was the prediction by a team of scientists headed by D. S. Chernavskii, the major crises that have occurred in our country over the last 20 years, namely, the default of 1998, the crisis of industrial production in the second half of the 2000s, the 2008 crisis and the ensuing recession. As an example, the dynamic analysis of the global macroeconomic processes shows the model of functioning of the dollar as the world currency. On this particular example shows the possibility of seigniorage due to the issue of the dollar and the calculated “window of opportunity” that allows you to issue dollars as the global currency, without prejudice to its own economy.

    A model for the development of a closed society (without external economic relations) in the one-product approach is considered as an example of dynamic analysis of the economy of a separate state. The model is based on the principles of market economy, i.e. the dynamics of prices is determined by the balance of supply and demand. It is shown that in the general case, the state of market equilibrium is not unique. Several steady states with different levels of production and consumption are possible. Effect of addressed emission of money in underproductive state is considered. It is shown that, depending on its size it can lead to the transition to a highly productive condition, and just cause inflation without transition. The relationship of these results with the “Keynesian” and “monetarist” approaches is discussed.

    Views (last year): 5. Citations: 2 (RSCI).
  9. Popov D.I., Klimchik A.S.
    Stiffness modeling for anthropomorphic robots
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 631-651

    In the work modeling method of anthropomorphic platforms is presented. An elastostatic stiffness model is used to determine positioning errors in the robot’s lower limbs. One of the main problems in achieving a fast and stable gait are deflections caused by the flexibility in the elements of the robot. This problem was solved using virtual joint modeling to predict stiffness and deformation caused by the robot weight and external forces.

    To simulate a robot in the single-support phase, the robot is represented as a serial kinematic chain with a base at the supporting leg point of contact and an end effector in the swing leg foot. In the double support phase robot modeled as a parallel manipulator with an end effector in the pelvis. In this work, two cases of stiffness modeling are used: taking into account the compliance of the links and joints and taking into account only the compliance of joints. In the last case, joint compliances also include part of the link compliances. The joint stiffness parameters have been identified for two anthropomorphic robots: a small platform and a full-sized AR-601M.

    Deflections maps were calculated using identified stiffness parameters and showing errors depending on the position of the robot end effector in the workspace. The errors in Z directions have maximum amplitude, due to the influence of the robot mass on its structure.

    Views (last year): 3.
  10. Emaletdinova L.Y., Mukhametzyanov Z.I., Kataseva D.V., Kabirova A.N.
    A method of constructing a predictive neural network model of a time series
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 737-756

    This article studies a method of constructing a predictive neural network model of a time series based on determining the composition of input variables, constructing a training sample and training itself using the back propagation method. Traditional methods of constructing predictive models of the time series are: the autoregressive model, the moving average model or the autoregressive model — the moving average allows us to approximate the time series by a linear dependence of the current value of the output variable on a number of its previous values. Such a limitation as linearity of dependence leads to significant errors in forecasting.

    Mining Technologies using neural network modeling make it possible to approximate the time series by a nonlinear dependence. Moreover, the process of constructing of a neural network model (determining the composition of input variables, the number of layers and the number of neurons in the layers, choosing the activation functions of neurons, determining the optimal values of the neuron link weights) allows us to obtain a predictive model in the form of an analytical nonlinear dependence.

    The determination of the composition of input variables of neural network models is one of the key points in the construction of neural network models in various application areas that affect its adequacy. The composition of the input variables is traditionally selected from some physical considerations or by the selection method. In this work it is proposed to use the behavior of the autocorrelation and private autocorrelation functions for the task of determining the composition of the input variables of the predictive neural network model of the time series.

    In this work is proposed a method for determining the composition of input variables of neural network models for stationary and non-stationary time series, based on the construction and analysis of autocorrelation functions. Based on the proposed method in the Python programming environment are developed an algorithm and a program, determining the composition of the input variables of the predictive neural network model — the perceptron, as well as building the model itself. The proposed method was experimentally tested using the example of constructing a predictive neural network model of a time series that reflects energy consumption in different regions of the United States, openly published by PJM Interconnection LLC (PJM) — a regional network organization in the United States. This time series is non-stationary and is characterized by the presence of both a trend and seasonality. Prediction of the next values of the time series based on previous values and the constructed neural network model showed high approximation accuracy, which proves the effectiveness of the proposed method.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"