All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Modeling the impact of sanctions and import substitution on market performance
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 365-380The article considers an approach to modeling the impact of sanctions and import substitution on the performance of high-tech product markets based on the use of control theory methods (operational calculus, z-transform). The model under consideration assumes that an equipment manufacturer supplies unique high-tech equipment to a high-tech product (HP) manufacturer that dominates the equipment consumer market. The HP manufacturer, fearing disruption of equipment supplies due to the introduction of all kinds of restrictions and sanctions, invests in the development of import-substituting equipment production in a third company, which can also find application in the external market, at the expense of deductions from its profits. The influence of the following factors and actions on the performance of the conditional market is analyzed: 1) the degree of inertia of the development and production development processes in the company; 2) the share of equipment of the import-substituting company supplied to the HP manufacturer; 3) sanctions (general and selective) on the supply of equipment to the company-manufacturer of the import substitution, as well as blocking the import substitution process in the third company by the first company.
The calculations show that the acceleration of the equipment development and production processes leads to a faster decrease in the production volumes of the first company. At the same time, an increase in price is observed, which is associated with a change in the parameters of the inverse demand function.
An increase in the share of equipment of the import-substituting company consumed by the second company can lead to a sharp increase in production volumes in the second and third companies, stabilization of production volumes in the first company and an increase in price.
The introduction of sanctions leads to a decrease in the production volumes and income of all companies relative to the baseline version. A significant change in price also occurs. However, due to the inertia of the equipment production processes in the example under consideration, a significant change in production volumes in the aggregate of companies occurs with a significant lag. This is especially characteristic of the third company, in which a noticeable deviation from the baseline version begins after 20 years. The blocking by the first equipment manufacturing company of investments in the development of import substitution in the third company ensures a relatively small gain for the first company in production volumes and NPV although allows to raise her market share.
Keywords: high-tech products, operational calculation, sanctions, import substitution, dynamics, market. -
Computer modeling of the gross regional product dynamics: a comparative analysis of neural network models
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1219-1236Analysis of regional economic indicators plays a crucial role in management and development planning, with Gross Regional Product (GRP) serving as one of the key indicators of economic activity. The application of artificial intelligence, including neural network technologies, enables significant improvements in the accuracy and reliability of forecasts of economic processes. This study compares three neural network algorithm models for predicting the GRP of a typical region of the Russian Federation — the Udmurt Republic — based on time series data from 2000 to 2023. The selected models include a neural network with the Bat Algorithm (BA-LSTM), a neural network model based on backpropagation error optimized with a Genetic Algorithm (GA-BPNN), and a neural network model of Elman optimized using the Particle Swarm Optimization algorithm (PSO-Elman). The research involved stages of neural network modeling such as data preprocessing, training model, and comparative analysis based on accuracy and forecast quality metrics. This approach allows for evaluating the advantages and limitations of each model in the context of GRP forecasting, as well as identifying the most promising directions for further research. The utilization of modern neural network methods opens new opportunities for automating regional economic analysis and improving the quality of forecast assessments, which is especially relevant when data are limited and for rapid decision-making. The study uses factors such as the amount of production capital, the average annual number of labor resources, the share of high-tech and knowledge-intensive industries in GRP, and an inflation indicator as input data for predicting GRP. The high accuracy of the predictions achieved by including these factors in the neural network models confirms the strong correlation between these factors and GRP. The results demonstrate the exceptional accuracy of the BA-LSTM neural network model on validation data: the coefficient of determination was 0.82, and the mean absolute percentage error was 4.19%. The high performance and reliability of this model confirm its capacity to predict effectively the dynamics of the GRP. During the forecast period up to 2030, the Udmurt Republic is expected to experience an annual increase in Gross Regional Product (GRP) of +4.6% in current prices or +2.5% in comparable 2023 prices. By 2030, the GRP is projected to reach 1264.5 billion rubles.
-
Hypergeometric functions in model of General equilibrium of multisector economy with monopolistic competition
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 825-836Views (last year): 10.We show that basic properties of some models of monopolistic competition are described using families of hypergeometric functions. The results obtained by building a general equilibrium model in a multisector economy producing a differentiated good in $n$ high-tech sectors in which single-product firms compete monopolistically using the same technology. Homogeneous (traditional) sector is characterized by perfect competition. Workers are motivated to find a job in high-tech sectors as wages are higher there. However, they are at risk to remain unemployed. Unemployment persists in equilibrium by labor market imperfections. Wages are set by firms in high-tech sectors as a result of negotiations with employees. It is assumed that individuals are homogeneous consumers with identical preferences that are given the separable utility function of general form. In the paper the conditions are found such that the general equilibrium in the model exists and is unique. The conditions are formulated in terms of the elasticity of substitution $\mathfrak{S}$ between varieties of the differentiated good which is averaged over all consumers. The equilibrium found is symmetrical with respect to the varieties of differentiated good. The equilibrium variables can be represented as implicit functions which properties are associated elasticity $\mathfrak{S}$ introduced by the authors. A complete analytical description of the equilibrium variables is possible for known special cases of the utility function of consumers, for example, in the case of degree functions, which are incorrect to describe the response of the economy to changes in the size of the markets. To simplify the implicit function, we introduce a utility function defined by two one-parameter families of hypergeometric functions. One of the families describes the pro-competitive, and the other — anti-competitive response of prices to an increase in the size of the economy. A parameter change of each of the families corresponds to all possible values of the elasticity $\mathfrak{S}$. In this sense, the hypergeometric function exhaust natural utility function. It is established that with the increase in the elasticity of substitution between the varieties of the differentiated good the difference between the high-tech and homogeneous sectors is erased. It is shown that in the case of large size of the economy in equilibrium individuals consume a small amount of each product as in the case of degree preferences. This fact allows to approximate the hypergeometric functions by the sum of degree functions in a neighborhood of the equilibrium values of the argument. Thus, the change of degree utility functions by hypergeometric ones approximated by the sum of two power functions, on the one hand, retains all the ability to configure parameters and, on the other hand, allows to describe the effects of change the size of the sectors of the economy.
-
Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.
-
Nonextensive Tsallis statistics of contract system of prime contractors and subcontractors in defense industry
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1163-1183In this work, we analyze the system of contracts made by Russian defense enterprises in the process of state defense order execution. We conclude that methods of statistical mechanics can be applied to the description of the given system. Following the original grand-canonical ensemble approach, we can create the statistical ensemble under investigation as a set of instant snapshots of indistinguishable contracts having individual values. We show that due to government regulations of contract prices the contract system can be described in terms of nonextensive Tsallis statistics. We have found that probability distributions of contract prices correspond to deformed Bose – Einstein distributions obtained using nonextensive Tsallis entropy. This conclusion is true both in the case of the whole set of contracts and in the case of the contracts made by an individual defense company as a seller.
In order to analyze how deformed Bose – Einstein distributions fit the empirical contract price distributions we compare the corresponding cumulative distribution functions. We conclude that annual distributions of individual sales which correspond to each company’s contract (order) can be used as relevant data for contract price distributions analysis. The empirical cumulative distribution functions for the individual sales ranking of Concern CSRI Elektropribor, one of the leading Russian defense companies, are analyzed for the period 2007–2021. The theoretical cumulative distribution functions, obtained using deformed Bose – Einstein distributions in the case of «rare contract gas» limit, fit well to the empirical cumulative distribution functions. The fitted values for the entropic index show that the degree of nonextensivity of the system under investigations is rather high. It is shown that the characteristic prices of distributions can be estimated by weighing the values of annual individual sales with the escort probabilities. Given that the fitted values of chemical potential are equal to zero, we suggest that «gas of contracts» can be compared to photon gas in which the number of particles is not conserved.
-
Development of and research on an algorithm for distinguishing features in Twitter publications for a classification problem with known markup
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 171-183Social media posts play an important role in demonstration of financial market state, and their analysis is a powerful tool for trading. The article describes the result of a study of the impact of social media activities on the movement of the financial market. The top authoritative influencers are selected. Twitter posts are used as data. Such texts usually include slang and abbreviations, so methods for preparing primary text data, including Stanza, regular expressions are presented. Two approaches to the representation of a point in time in the format of text data are considered. The difference of the influence of a single tweet or a whole package consisting of tweets collected over a certain period of time is investigated. A statistical approach in the form of frequency analysis is also considered, metrics defined by the significance of a particular word when identifying the relationship between price changes and Twitter posts are introduced. Frequency analysis involves the study of the occurrence distributions of various words and bigrams in the text for positive, negative or general trends. To build the markup, changes in the market are processed into a binary vector using various parameters, thus setting the task of binary classification. The parameters for Binance candlesticks are sorted out for better description of the movement of the cryptocurrency market, their variability is also explored in this article. Sentiment is studied using Stanford Core NLP. The result of statistical analysis is relevant to feature selection for further binary or multiclass classification tasks. The presented methods of text analysis contribute to the increase of the accuracy of models designed to solve natural language processing problems by selecting words, improving the quality of vectorization. Such algorithms are often used in automated trading strategies to predict the price of an asset, the trend of its movement.
-
Assessing the impact of deposit benchmark interest rate on banking loan dynamics
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 1023-1032Deposit benchmark interest rates are a policy implemented by banking regulators to calculate the interest rates offered to depositors, maintaining equitable and competitive rates within the financial industry. It functions as a benchmark for determining the pricing of different banking products, expenses, and financial choices. The benchmark rate will have a direct impact on the amount of money deposited, which in turn will determine the amount of money available for lending.We are motivated to analyze the influence of deposit benchmark interest rates on the dynamics of banking loans. This study examines the issue using a difference equation of banking loans. In this process, the decision on the loan amount in the next period is influenced by both the present loan volume and the information on its marginal profit. An analysis is made of the loan equilibrium point and its stability. We also analyze the bifurcations that arise in the model. To ensure a stable banking loan, it is necessary to set the benchmark rate higher than the flip value and lower than the transcritical bifurcation values. The confirmation of this result is supported by the bifurcation diagram and its associated Lyapunov exponent. Insufficient deposit benchmark interest rates might lead to chaotic dynamics in banking lending. Additionally, a bifurcation diagram with two parameters is also shown. We do numerical sensitivity analysis by examining contour plots of the stability requirements, which vary with the deposit benchmark interest rate and other parameters. In addition, we examine a nonstandard difference approach for the previous model, assess its stability, and make a comparison with the standard model. The outcome of our study can provide valuable insights to the banking regulator in making informed decisions regarding deposit benchmark interest rates, taking into account several other banking factors.
-
Iterative decomposition methods in modelling the development of oligopolistic markets
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1237-1256One of the principles of forming a competitive market environment is to create conditions for economic agents to implement Nash – Cournot optimal strategies. With the standard approach to determining Nash – Cournot optimal market strategies, economic agents must have complete information about the indicators and dynamic characteristics of all market participants. Which is not true.
In this regard, to find Nash – Cournot optimal solutions in dynamic models, it is necessary to have a coordinator who has complete information about the participants. However, in the case of a large number of game participants, even if the coordinator has the necessary information, computational difficulties arise associated with the need to solve a large number of coupled equations (in the case of linear dynamic games — Riccati matrix equations).
In this regard, there is a need to decompose the general problem of determining optimal strategies for market participants into private (local) problems. Approaches based on the iterative decomposition of coupled matrix Riccati equations and the solution of local Riccati equations were studied for linear dynamic games with a quadratic criterion. This article considers a simpler approach to the iterative determination of the Nash – Cournot equilibrium in an oligopoly, by decomposition using operational calculus (operator method).
The proposed approach is based on the following procedure. A virtual coordinator, which has information about the parameters of the inverse demand function, forms prices for the prospective period. Oligopolists, given fixed price dynamics, determine their strategies in accordance with a slightly modified optimality criterion. The optimal volumes of production of the oligopolists are sent to the coordinator, who, based on the iterative algorithm, adjusts the price dynamics at the previous step.
The proposed procedure is illustrated by the example of a static and dynamic model of rational behavior of oligopoly participants who maximize the net present value (NPV). Using the methods of operational calculus (and in particular, the inverse Z-transformation), conditions are found under which the iterative procedure leads to equilibrium levels of price and production volumes in the case of linear dynamic games with both quadratic and nonlinear (concave) optimization criteria.
The approach considered is used in relation to examples of duopoly, triopoly, duopoly on the market with a differentiated product, duopoly with interacting oligopolists with a linear inverse demand function. Comparison of the results of calculating the dynamics of price and production volumes of oligopolists for the considered examples based on coupled equations of the matrix Riccati equations in Matlab (in the table — Riccati), as well as in accordance with the proposed iterative method in the widely available Excel system shows their practical identity.
In addition, the application of the proposed iterative procedure is illustrated by the example of a duopoly with a nonlinear demand function.
-
Experimental investigation of Russian citizens expenses on new cars and a correspondence to their income
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 621-629Citations: 3 (RSCI).The question of distribution of citizens expenses in modern Russia is experimentally investigated. New cars were chosen as representative group of the acquired goods as well as earlier. Results of the analysis of sales of new cars for 2007–2009 are presented below. Main “body” of density of probability to find certain number of cars depending on their price, since some initial price up to ~ k$60, is an exponential distribution. The found feature of distribution (unlike 2003–2005) was an existence of minimum price. For expensive cars (distribution “tail”), the asymptotic form is the Pareto distribution with a hyperbole exponent a little greater, than measured earlier for 2003–2005. The results turned up to be similar to direct measurements of distribution of tax declarations on their size, submitted to the USA in 2004 where exponential distribution of the income of citizens, since some minimum, with some asymptotic in the form of Pareto's distribution also was observed.
-
Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




