Результаты поиска по 'oligopoly':
Найдено статей: 3
  1. Kosacheva A.I.
    Impact of the non-market advantage on equilibrium in A Hotelling model
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 573-581

    The principle of minimal differentiation, based on the Hotelling model, is well known in the economy. It is applicable to horizontal differentiated goods of almost any nature. The Hotelling approach to modeling competition of oligopolies corresponds to a modern description of monopolistic competition with increasing returns to scale and imperfect competition. We develop a modification of the Hotelling model that endows a firm with a non-market advantage, which is introduced alike the valence advantage known in problems of political economy. The nonmarket (valence) advantage can be interpreted as advertisement (brand awareness of firms). Problem statement. Consider two firms competing with prices and location. Homogeneous consumers vary with its location on a segment. They minimize their costs, which additively includes the price of the product and the distance from them to the product. The utility function is linear with respect to the price and quadratic with respect to the distance. It is also expected that one of the firms (for certainty, firm № 1) has a market advantage d. The consumers are assumed to take into account the sum of the distance to the product and the market advantage of firm 1. Thus, the strategy of the firms and the consumers depend on two parameters: the unit t of the transport costs and the non-market advantage d. I explore characteristics of the equilibrium in the model as a function of the non-market advantage for different fixed t. The aim of the research is to assess the impact of the non-market advantage on the equlibrium. We prove that the Nash equilibrium exists and it is unique under additive consumers' preferences de-pending on the square of the distance between consumers and firms. This equilibrium is ‘richer’ than that in the original Hotelling model. In particular, non-market advantage can be excessive and inefficient to use.

  2. Varshavsky L.E.
    Iterative decomposition methods in modelling the development of oligopolistic markets
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1237-1256

    One of the principles of forming a competitive market environment is to create conditions for economic agents to implement Nash – Cournot optimal strategies. With the standard approach to determining Nash – Cournot optimal market strategies, economic agents must have complete information about the indicators and dynamic characteristics of all market participants. Which is not true.

    In this regard, to find Nash – Cournot optimal solutions in dynamic models, it is necessary to have a coordinator who has complete information about the participants. However, in the case of a large number of game participants, even if the coordinator has the necessary information, computational difficulties arise associated with the need to solve a large number of coupled equations (in the case of linear dynamic games — Riccati matrix equations).

    In this regard, there is a need to decompose the general problem of determining optimal strategies for market participants into private (local) problems. Approaches based on the iterative decomposition of coupled matrix Riccati equations and the solution of local Riccati equations were studied for linear dynamic games with a quadratic criterion. This article considers a simpler approach to the iterative determination of the Nash – Cournot equilibrium in an oligopoly, by decomposition using operational calculus (operator method).

    The proposed approach is based on the following procedure. A virtual coordinator, which has information about the parameters of the inverse demand function, forms prices for the prospective period. Oligopolists, given fixed price dynamics, determine their strategies in accordance with a slightly modified optimality criterion. The optimal volumes of production of the oligopolists are sent to the coordinator, who, based on the iterative algorithm, adjusts the price dynamics at the previous step.

    The proposed procedure is illustrated by the example of a static and dynamic model of rational behavior of oligopoly participants who maximize the net present value (NPV). Using the methods of operational calculus (and in particular, the inverse Z-transformation), conditions are found under which the iterative procedure leads to equilibrium levels of price and production volumes in the case of linear dynamic games with both quadratic and nonlinear (concave) optimization criteria.

    The approach considered is used in relation to examples of duopoly, triopoly, duopoly on the market with a differentiated product, duopoly with interacting oligopolists with a linear inverse demand function. Comparison of the results of calculating the dynamics of price and production volumes of oligopolists for the considered examples based on coupled equations of the matrix Riccati equations in Matlab (in the table — Riccati), as well as in accordance with the proposed iterative method in the widely available Excel system shows their practical identity.

    In addition, the application of the proposed iterative procedure is illustrated by the example of a duopoly with a nonlinear demand function.

  3. Varshavsky L.E.
    Approximate methods of studying dynamics of market structure
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 219-229

    An approach to computation of open-loop optimal Nash–Cournot strategies in dynamical games which is based on the Z-transform method and factorization is proposed. The main advantage of the proposed approach is that it permits to overcome the problems of instability of economic indicators of oligopolies arising when generalized Riccati equations are used.

    Views (last year): 3. Citations: 9 (RSCI).

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"