Результаты поиска по 'second-order method':
Найдено статей: 72
  1. Mokin A.Y.
    Correctness of task family with nonclassical boundary conditions
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 139-146

    A boundary value problem for partial differential equation with nonlocal boundary relations of special type is resolved by means of a slight modification of the separation of variables method. Ordinal differential operator of the second order subject to boundary conditions of the main problem is not self-adjoint. The system of eigenfunctions generated by the operator has no basis property in L2[0,1] space. A special system of functions is proposed to expand the solution of the boundary value problem.

    Views (last year): 2.
  2. Batgerel B., Nikonov E.G., Puzynin I.V.
    Procedure for constructing of explicit, implicit and symmetric simplectic schemes for numerical solving of Hamiltonian systems of equations
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 861-871

    Equations of motion in Newtonian and Hamiltonian forms are used for classical molecular dynamics simulation of particle system time evolution. When Newton equations of motion are used for finding of particle coordinates and velocities in $N$-particle system it takes to solve $3N$ ordinary differential equations of second order at every time step. Traditionally numerical schemes of Verlet method are used for solving Newtonian equations of motion of molecular dynamics. A step of integration is necessary to decrease for Verlet numerical schemes steadiness conservation on sufficiently large time intervals. It leads to a significant increase of the volume of calculations. Numerical schemes of Verlet method with Hamiltonian conservation control (the energy of the system) at every time moment are used in the most software packages of molecular dynamics for numerical integration of equations of motion. It can be used two complement each other approaches to decrease of computational time in molecular dynamics calculations. The first of these approaches is based on enhancement and software optimization of existing software packages of molecular dynamics by using of vectorization, parallelization and special processor construction. The second one is based on the elaboration of efficient methods for numerical integration for equations of motion. A procedure for constructing of explicit, implicit and symmetric symplectic numerical schemes with given approximation accuracy in relation to integration step for solving of molecular dynamic equations of motion in Hamiltonian form is proposed in this work. The approach for construction of proposed in this work procedure is based on the following points: Hamiltonian formulation of equations of motion; usage of Taylor expansion of exact solution; usage of generating functions, for geometrical properties of exact solution conservation, in derivation of numerical schemes. Numerical experiments show that obtained in this work symmetric symplectic third-order accuracy scheme conserves basic properties of the exact solution in the approximate solution. It is more stable for approximation step and conserves Hamiltonian of the system with more accuracy at a large integration interval then second order Verlet numerical schemes.

    Views (last year): 11.
  3. Bondareva N.S., Gibanov N.S., Martyushev S.G., Miroshnichenko I.V., Sheremet M.A.
    Comparative analysis of finite difference method and finite volume method for unsteady natural convection and thermal radiation in a cubical cavity filled with a diathermic medium
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 567-578

    Comparative analysis of two numerical methods for simulation of unsteady natural convection and thermal surface radiation within a differentially heated cubical cavity has been carried out. The considered domain of interest had two isothermal opposite vertical faces, while other walls are adiabatic. The walls surfaces were diffuse and gray, namely, their directional spectral emissivity and absorptance do not depend on direction or wavelength but can depend on surface temperature. For the reflected radiation we had two approaches such as: 1) the reflected radiation is diffuse, namely, an intensity of the reflected radiation in any point of the surface is uniform for all directions; 2) the reflected radiation is uniform for each surface of the considered enclosure. Mathematical models formulated both in primitive variables “velocity–pressure” and in transformed variables “vector potential functions – vorticity vector” have been performed numerically using finite volume method and finite difference methods, respectively. It should be noted that radiative heat transfer has been analyzed using the net-radiation method in Poljak approach.

    Using primitive variables and finite volume method for the considered boundary-value problem we applied power-law for an approximation of convective terms and central differences for an approximation of diffusive terms. The difference motion and energy equations have been solved using iterative method of alternating directions. Definition of the pressure field associated with velocity field has been performed using SIMPLE procedure.

    Using transformed variables and finite difference method for the considered boundary-value problem we applied monotonic Samarsky scheme for convective terms and central differences for diffusive terms. Parabolic equations have been solved using locally one-dimensional Samarsky scheme. Discretization of elliptic equations for vector potential functions has been conducted using symmetric approximation of the second-order derivatives. Obtained difference equation has been solved by successive over-relaxation method. Optimal value of the relaxation parameter has been found on the basis of computational experiments.

    As a result we have found the similar distributions of velocity and temperature in the case of these two approaches for different values of Rayleigh number, that illustrates an operability of the used techniques. The efficiency of transformed variables with finite difference method for unsteady problems has been shown.

    Views (last year): 13. Citations: 1 (RSCI).
  4. The well-known evolutionary equation of mathematical physics, which in modern mathematical literature is called the Kuramoto – Sivashinsky equation, is considered. In this paper, this equation is studied in the original edition of the authors, where it was proposed, together with the homogeneous Neumann boundary conditions.

    The question of the existence and stability of local attractors formed by spatially inhomogeneous solutions of the boundary value problem under study has been studied. This issue has become particularly relevant recently in connection with the simulation of the formation of nanostructures on the surface of semiconductors under the influence of an ion flux or laser radiation. The question of the existence and stability of second-order equilibrium states has been studied in two different ways. In the first of these, the Galerkin method was used. The second approach is based on using strictly grounded methods of the theory of dynamic systems with infinite-dimensional phase space: the method of integral manifolds, the theory of normal forms, asymptotic methods.

    In the work, in general, the approach from the well-known work of D.Armbruster, D.Guckenheimer, F.Holmes is repeated, where the approach based on the application of the Galerkin method is used. The results of this analysis are substantially supplemented and developed. Using the capabilities of modern computers has helped significantly complement the analysis of this task. In particular, to find all the solutions in the fourand five-term Galerkin approximations, which for the studied boundary-value problem should be interpreted as equilibrium states of the second kind. An analysis of their stability in the sense of A. M. Lyapunov’s definition is also given.

    In this paper, we compare the results obtained using the Galerkin method with the results of a bifurcation analysis of a boundary value problem based on the use of qualitative analysis methods for infinite-dimensional dynamic systems. Comparison of two variants of results showed some limited possibilities of using the Galerkin method.

    Views (last year): 27.
  5. Basalaev A.V., Kloss Y.Y., Lubimov D.U., Knyazev A.N., Shuvalov P.V., Sherbakov D.V., Nahapetyan A.V.
    A problem-modeling environment for the numerical solution of the Boltzmann equation on a cluster architecture for analyzing gas-kinetic processes in the interelectrode gap of thermal emission converters
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 219-232

    This paper is devoted to the application of the method of numerical solution of the Boltzmann equation for the solution of the problem of modeling the behavior of radionuclides in the cavity of the interelectric gap of a multielement electrogenerating channel. The analysis of gas-kinetic processes of thermionic converters is important for proving the design of the power-generating channel. The paper reviews two constructive schemes of the channel: with one- and two-way withdrawal of gaseous fission products into a vacuum-cesium system. The analysis uses a two-dimensional transport equation of the second-order accuracy for the solution of the left-hand side and the projection method for solving the right-hand side — the collision integral. In the course of the work, a software package was implemented that makes it possible to calculate on the cluster architecture by using the algorithm of parallelizing the left-hand side of the equation; the paper contains the results of the analysis of the dependence of the calculation efficiency on the number of parallel nodes. The paper contains calculations of data on the distribution of pressures of gaseous fission products in the gap cavity, calculations use various sets of initial pressures and flows; the dependency of the radionuclide pressure in the collector region was determined as a function of cesium pressures at the ends of the gap. The tests in the loop channel of a nuclear reactor confirm the obtained results.

    Views (last year): 24.
  6. We study the class of first order differential equations in partial derivatives of the Clairaut-type, which are a multidimensional generalization of the ordinary differential Clairaut equation to the case when the unknown function depends on many variables. It is known that the general solution of the Clairaut-type partial differential equation is a family of integral (hyper-) planes. In addition to the general solution, there can be particular solutions, and in some cases a special (singular) solution can be found.

    The aim of the paper is to find a singular solution of the Clairaut-type equation in partial derivatives of the first order with a special right-hand side. In the paper, we formulate a criterion for the existence of a special solution of a differential equation of Clairaut type in partial derivatives for the case, when the function of the derivatives is a function of a linear combination of partial derivatives of unknown function. We obtain the singular solution for this type of differential equations with trigonometric functions of a linear combination of $n$-independent variables with arbitrary coefficients. It is shown that the task of finding a special solution is reduced to solving a system of transcendental equations containing initial trigonometric functions. The article describes the procedure for evaluation of a singular solution of Clairaut-type equation; the main idea is to find not partial derivatives of the unknown function, as functions of independent variables, but linear combinations of partial derivatives with some coefficients. This method can be used to find special solutions of Clairaut-type equations, for which this structure is preserved.

    The work is organized as follows. The Introduction contains a brief review of some modern results related to the topic of the study of Clairaut-type equations. The Second part is the main one and it includes a formulation of the main task of the work and describes a method of evaluation of singular solutions for the Clairaut-type equations in partial derivatives with a special right-hand side. The main result of the work is to find singular solutions of the Clairaut-type equations containing trigonometric functions. These solutions are given in the main part of the work as an illustrating example for the method described earlier. In Conclusion, we formulate the results of the work and describe future directions of the research.

  7. We present the iterative algorithm that solves numerically both Urysohn type Fredholm and Volterra nonlinear one-dimensional nonsingular integral equations of the second kind to a specified, modest user-defined accuracy. The algorithm is based on descending recursive sequence of quadratures. Convergence of numerical scheme is guaranteed by fixed-point theorems. Picard’s method of integrating successive approximations is of great importance for the existence theory of integral equations but surprisingly very little appears on numerical algorithms for its direct implementation in the literature. We show that successive approximations method can be readily employed in numerical solution of integral equations. By that the quadrature algorithm is thoroughly designed. It is based on the explicit form of fifth-order embedded Runge–Kutta rule with adaptive step-size self-control. Since local error estimates may be cheaply obtained, continuous monitoring of the quadrature makes it possible to create very accurate automatic numerical schemes and to reduce considerably the main drawback of Picard iterations namely the extremely large amount of computations with increasing recursion depth. Our algorithm is organized so that as compared to most approaches the nonlinearity of integral equations does not induce any additional computational difficulties, it is very simple to apply and to make a program realization. Our algorithm exhibits some features of universality. First, it should be stressed that the method is as easy to apply to nonlinear as to linear equations of both Fredholm and Volterra kind. Second, the algorithm is equipped by stopping rules by which the calculations may to considerable extent be controlled automatically. A compact C++-code of described algorithm is presented. Our program realization is self-consistent: it demands no preliminary calculations, no external libraries and no additional memory is needed. Numerical examples are provided to show applicability, efficiency, robustness and accuracy of our approach.

  8. Bragin M.D., Rogov B.V.
    Bicompact schemes for gas dynamics problems: introducing complex domains using the free boundary method
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 487-504

    This work is dedicated to application of bicompact schemes to numerical solution of evolutionary hyperbolic equations. The main advantage of this class of schemes lies in combination of two beneficial properties: the first one is spatial approximation of high even order on a stencil that always occupies only one mesh cell; the second one is spectral resolution which is better in comparison to classic compact finite-difference schemes of the same order of spatial approximation. One feature of bicompact schemes is considered: their spatial approximation is rigidly tied to Cartesian meshes (with parallelepiped-shaped cells in three-dimensional case). This feature makes rather challenging any application of bicompact schemes to problems with complex computational domains as treated in the framework of unstructured meshes. This problem is proposed to be solved using well-known methods for treating complex-shaped boundaries and their corresponding boundary conditions on Cartesian meshes. The generalization of bicompact schemes on problems in geometrically complex domains is made in case of gas dynamics problems and Euler equations. The free boundary method is chosen as a particular tool to introduce the influence of arbitrary-shaped solid boundaries on gas flows on Cartesian meshes. A brief description of this method is given, its governing equations are written down. Bicompact schemes of fourth order of approximation in space with locally one-dimensional splitting are constructed for equations of the free boundary method. Its compensation flux is discretized with second order of accuracy. Time stepping in the obtained schemes is done with the implicit Euler method and the third order accurate $L$-stable stiffly accurate three-stage singly diagonally implicit Runge–Kutta method. The designed bicompact schemes are tested on three two-dimensional problems: stationary supersonic flows with Mach number three past one circular cylinder and past three circular cylinders; the non-stationary interaction of planar shock wave with a circular cylinder in a channel with planar parallel walls. The obtained results are in a good agreement with other works: influence of solid bodies on gas flows is physically correct, pressure in control points on solid surfaces is calculated with the accuracy appropriate to the chosen mesh resolution and level of numerical dissipation.

  9. The work is devoted to numerical modeling of two-phase flows, namely, the calculation of supersonic flow around a blunt body by a viscous gas flow with an admixture of large high inertia particles. The system of unsteady Navier – Stokes equations is numerically solved by the meshless method. It uses the cloud of points in space to represent the fields of gas parameters. The spatial derivatives of gas parameters and functions are approximated by the least square method to calculate convective and viscous fluxes in the Navier – Stokes system of equations. The convective fluxes are calculated by the HLLC method. The third-order MUSCL reconstruction scheme is used to achieve high order accuracy. The viscous fluxes are calculated by the second order approximation scheme. The streamlined body surface is represented by a model of an isothermal wall. It implements the conditions for the zero velocity and zero pressure gradient, which is also modeled using the least squares method.

    Every moving body is surrounded by its own cloud of points belongs to body’s domain and moving along with it in space. The explicit three-sage Runge–Kutta method is used to solve numerically the system of gas dynamics equations in the main coordinate system and local coordinate systems of each particle.

    Two methods for the moving objects modeling with reverse impact on the gas flow have been implemented. The first one uses stationary point clouds with fixed neighbors within the same domain. When regions overlap, some nodes of one domain, for example, the boundary nodes of the particle domain, are excluded from the calculation and filled with the values of gas parameters from the nearest nodes of another domain using the least squares approximation of gradients. The internal nodes of the particle domain are used to reconstruct the gas parameters in the overlapped nodes of the main domain. The second method also uses the exclusion of nodes in overlapping areas, but in this case the nodes of another domain take the place of the excluded neighbors to build a single connected cloud of nodes. At the same time, some of the nodes are moving, and some are stationary. Nodes membership to different domains and their relative speed are taken into account when calculating fluxes.

    The results of modeling the motion of a particle in a stationary gas and the flow around a stationary particle by an incoming flow at the same relative velocity show good agreement for both presented methods.

  10. Aristova E.N., Karavaeva N.I.
    Bicompact schemes for the HOLO algorithm for joint solution of the transport equation and the energy equation
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1429-1448

    The numerical solving of the system of high-temperature radiative gas dynamics (HTRGD) equations is a computationally laborious task, since the interaction of radiation with matter is nonlinear and non-local. The radiation absorption coefficients depend on temperature, and the temperature field is determined by both gas-dynamic processes and radiation transport. The method of splitting into physical processes is usually used to solve the HTRGD system, one of the blocks consists of a joint solving of the radiative transport equation and the energy balance equation of matter under known pressure and temperature fields. Usually difference schemes with orders of convergence no higher than the second are used to solve this block. Due to computer memory limitations it is necessary to use not too detailed grids to solve complex technical problems. This increases the requirements for the order of approximation of difference schemes. In this work, bicompact schemes of a high order of approximation for the algorithm for the joint solution of the radiative transport equation and the energy balance equation are implemented for the first time. The proposed method can be applied to solve a wide range of practical problems, as it has high accuracy and it is suitable for solving problems with coefficient discontinuities. The non-linearity of the problem and the use of an implicit scheme lead to an iterative process that may slowly converge. In this paper, we use a multiplicative HOLO algorithm named the quasi-diffusion method by V.Ya.Goldin. The key idea of HOLO algorithms is the joint solving of high order (HO) and low order (LO) equations. The high-order equation (HO) is the radiative transport equation solved in the energy multigroup approximation, the system of quasi-diffusion equations in the multigroup approximation (LO1) is obtained by averaging HO equations over the angular variable. The next step is averaging over energy, resulting in an effective one-group system of quasi-diffusion equations (LO2), which is solved jointly with the energy equation. The solutions obtained at each stage of the HOLO algorithm are closely related that ultimately leads to an acceleration of the convergence of the iterative process. Difference schemes constructed by the method of lines within one cell are proposed for each of the stages of the HOLO algorithm. The schemes have the fourth order of approximation in space and the third order of approximation in time. Schemes for the transport equation were developed by B.V. Rogov and his colleagues, the schemes for the LO1 and LO2 equations were developed by the authors. An analytical test is constructed to demonstrate the declared orders of convergence. Various options for setting boundary conditions are considered and their influence on the order of convergence in time and space is studied.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"