Результаты поиска по 'solution of differential equations':
Найдено статей: 92
  1. Leon C., Tokarev A.A., Volpert V.A.
    Modelling of cytokine storm in respiratory viral infections
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 619-645

    In this work, we develop a model of the immune response to respiratory viral infections taking into account some particular properties of the SARS-CoV-2 infection. The model represents a system of ordinary differential equations for the concentrations of epithelial cells, immune cells, virus and inflammatory cytokines. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study dynamics of solutions. Behavior of solutions is characterized by large peaks of virus concentration specific for acute respiratory viral infections.

    At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. On the other hand, viral infection down-regulates interferon production. Their competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. In the case of infection outbreak, the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, increase of the initial viral load leads to shorter incubation period and higher maximal viral load.

    In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by excessive production of proinflammatory cytokines. Furthermore, inflammatory cell death can stimulate transition to cytokine storm. However, it cannot sustain it by itself without the innate immune response. Assumptions of the model and obtained results are in qualitative agreement with the experimental and clinical data.

  2. Gerasimov A.N., Shpitonkov M.I.
    Mathematical model of the parasite – host system with distributed immunity retention time
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 695-711

    The COVID-19 pandemic has caused increased interest in mathematical models of the epidemic process, since only statistical analysis of morbidity does not allow medium-term forecasting in a rapidly changing situation.

    Among the specific features of COVID-19 that need to be taken into account in mathematical models are the heterogeneity of the pathogen, repeated changes in the dominant variant of SARS-CoV-2, and the relative short duration of post-infectious immunity.

    In this regard, solutions to a system of differential equations for a SIR class model with a heterogeneous duration of post-infectious immunity were analytically studied, and numerical calculations were carried out for the dynamics of the system with an average duration of post-infectious immunity of the order of a year.

    For a SIR class model with a heterogeneous duration of post-infectious immunity, it was proven that any solution can be continued indefinitely in time in a positive direction without leaving the domain of definition of the system.

    For the contact number $R_0 \leqslant 1$, all solutions tend to a single trivial stationary solution with a zero share of infected people, and for $R_0 > 1$, in addition to the trivial solution, there is also a non-trivial stationary solution with non-zero shares of infected and susceptible people. The existence and uniqueness of a non-trivial stationary solution for $R_0 > 1$ was proven, and it was also proven that it is a global attractor.

    Also, for several variants of heterogeneity, the eigenvalues of the rate of exponential convergence of small deviations from a nontrivial stationary solution were calculated.

    It was found that for contact number values corresponding to COVID-19, the phase trajectory has the form of a twisting spiral with a period length of the order of a year.

    This corresponds to the real dynamics of the incidence of COVID-19, in which, after several months of increasing incidence, a period of falling begins. At the same time, a second wave of incidence of a smaller amplitude, as predicted by the model, was not observed, since during 2020–2023, approximately every six months, a new variant of SARS-CoV-2 appeared, which was more infectious than the previous one, as a result of which the new variant replaced the previous one and became dominant.

  3. Konyukhov I.V., Konyukhov V.M., Chernitsa A.A., Dyussenova A.
    Analysis of the physics-informed neural network approach to solving ordinary differential equations
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1621-1636

    Considered the application of physics-informed neural networks using multi layer perceptrons to solve Cauchy initial value problems in which the right-hand sides of the equation are continuous monotonically increasing, decreasing or oscillating functions. With the use of the computational experiments the influence of the construction of the approximate neural network solution, neural network structure, optimization algorithm and software implementation means on the learning process and the accuracy of the obtained solution is studied. The analysis of the efficiency of the most frequently used machine learning frameworks in software development with the programming languages Python and C# is carried out. It is shown that the use of C# language allows to reduce the time of neural networks training by 20–40%. The choice of different activation functions affects the learning process and the accuracy of the approximate solution. The most effective functions in the considered problems are sigmoid and hyperbolic tangent. The minimum of the loss function is achieved at the certain number of neurons of the hidden layer of a single-layer neural network for a fixed training time of the neural network model. It’s also mentioned that the complication of the network structure increasing the number of neurons does not improve the training results. At the same time, the size of the grid step between the points of the training sample, providing a minimum of the loss function, is almost the same for the considered Cauchy problems. Training single-layer neural networks, the Adam method and its modifications are the most effective to solve the optimization problems. Additionally, the application of twoand three-layer neural networks is considered. It is shown that in these cases it is reasonable to use the LBFGS algorithm, which, in comparison with the Adam method, in some cases requires much shorter training time achieving the same solution accuracy. The specificity of neural network training for Cauchy problems in which the solution is an oscillating function with monotonically decreasing amplitude is also investigated. For these problems, it is necessary to construct a neural network solution with variable weight coefficient rather than with constant one, which improves the solution in the grid cells located near by the end point of the solution interval.

  4. Ainbinder R.M., Rassadin A.E.
    On population migration in an ecological niche with a spatially heterogeneous local capacity
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 483-500

    The article describes the migration process of a certain population, taking into account the spatial heterogeneity of the local capacity of the ecological niche. It is assumed that this spatial heterogeneity is caused by various natural or artificial factors. The mathematical model of the migration process under consideration is a Cauchy problem on a straight line for some quasi-linear partial differential equation of the first order, which is satisfied by the linear population density under consideration. In this paper, a general solution to this Cauchy problem is found for an arbitrary dependence of the local capacity of an ecological niche on the spatial coordinate. This general solution was applied to describe the migration of the population in question in two different cases: in the case of a dependence of the local capacity of the ecological niche on the spatial coordinate in the form of a smooth step and in the case of a hill-like dependence of the local capacity of the ecological niche on the spatial coordinate. In both cases, the solution to the Cauchy problem is expressed in terms of higher transcendental functions. By applying special relations to the model parameters, these higher transcendental functions are reduced to elementary functions, which makes it possible to obtain exact model solutions explicitly expressed in terms of elementary functions. With the help of these precise solutions, an extensive program of computational experiments has been implemented, showing how the initial population density of the Gaussian form is dispersed by the considered two types of spatial heterogeneity of the local capacity of the ecological niche. These computational experiments have shown that when passing through both step-like and hill-like spatial inhomogeneities of the local capacity of an ecological niche with a narrow Gaussian width of its initial density compared to the characteristic spatial scale of these inhomogeneities, the system forgets its initial state. In particular, if we interpret the system under study as a population living in an extended calm rectilinear river along its bed, then it can be argued that under this initial condition, after the current of this river carries the population under consideration through the area of spatial heterogeneity of the local capacity of the ecological niche, the population density becomes a quasi-rectangular function.

  5. Koroleva M.R., Mishenkova O.V., Raeder T., Tenenev V.A., Chernova A.A.
    Numerical simulation of the process of activation of the safety valve
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 495-509

    The conjugate problem of disk movement into gas-filled volume of the spring-type safety valve is solved. The questions of determining the physically correct value of the disk initial lift are considered. The review of existing approaches and methods for solving of such type problems is conducted. The formulation of the problem about the valve actuation when the vessel pressure rises and the mathematical model of the actuation processes are given. A special attention to the binding of physical subtasks is paid. Used methods, numerical schemes and algorithms are described. The mathematical modeling is performed on basе the fundamental system of differential equations for viscous gas movement with the equation for displacement of disk valve. The solution of this problem in the axe symmetric statement is carried out numerically using the finite volume method. The results obtained by the viscous and inviscid models are compared. In an inviscid formulation this problem is solved using the Godunov scheme, and in a viscous formulation is solved using the Kurganov – Tadmor method. The dependence of the disk displacement on time was obtained and compared with the experimental data. The pressure distribution on the disk surface, velocity profiles in the cross sections of the gap for different disk heights are given. It is shown that a value of initial drive lift it does not affect on the gas flow and valve movement part dynamic. It can significantly reduce the calculation time of the full cycle of valve work. Immediate isotahs for various elevations of the disk are presented. The comparison of jet flow over critical section is given. The data carried out by two numerical experiments are well correlated with each other. So, the inviscid model can be applied to the numerical modeling of the safety valve dynamic.

    Views (last year): 34. Citations: 1 (RSCI).
  6. Grachev V.A., Nayshtut Yu.S.
    Relaxation oscillations and buckling of thin shells
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 807-820

    The paper reviews possibilities to predict buckling of thin cylindrical shells with non-destructive techniques during operation. It studies shallow shells made of high strength materials. Such structures are known for surface displacements exceeding the thickness of the elements. In the explored shells relaxation oscillations of significant amplitude can be generated even under relatively low internal stresses. The problem of the cylindrical shell oscillation is mechanically and mathematically modeled in a simplified form by conversion into an ordinary differential equation. To create the model, the researches of many authors were used who studied the geometry of the surface formed after buckling (postbuckling behavior). The nonlinear ordinary differential equation for the oscillating shell matches the well-known Duffing equation. It is important that there is a small parameter before the second time derivative in the Duffing equation. The latter circumstance enables making a detailed analysis of the obtained equation and describing the physical phenomena — relaxation oscillations — that are unique to thin high-strength shells.

    It is shown that harmonic oscillations of the shell around the equilibrium position and stable relaxation oscillations are defined by the bifurcation point of the solutions to the Duffing equation. This is the first point in the Feigenbaum sequence to convert the stable periodic motions into dynamic chaos. The amplitude and the period of relaxation oscillations are calculated based on the physical properties and the level of internal stresses within the shell. Two cases of loading are reviewed: compression along generating elements and external pressure.

    It is highlighted that if external forces vary in time according to the harmonic law, the periodic oscillation of the shell (nonlinear resonance) is a combination of slow and stick-slip movements. Since the amplitude and the frequency of the oscillations are known, this fact enables proposing an experimental facility for prediction of the shell buckling with non-destructive techniques. The following requirement is set as a safety factor: maximum load combinations must not cause displacements exceeding specified limits. Based on the results of the experimental measurements a formula is obtained to estimate safety against buckling (safety factor) of the structure.

  7. Suganya G., Senthamarai R.
    Analytical Approximation of a Nonlinear Model for Pest Control in Coconut Trees by the Homotopy Analysis Method
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1093-1106

    Rugose spiraling whitefly (RSW) is one of the major pests which affects the coconut trees. It feeds on the tree by sucking up the water content as well as the essential nutrients from leaves. It also forms sooty mold in leaves due to which the process of photosynthesis is inhibited. Biocontrol of pest is harmless for trees and crops. The experimental results in literature reveal that Pseudomallada astur is a potential predator for this pest. We investigate the dynamics of predator, Pseudomallada astur’s interaction with rugose spiralling whitefly, Aleurodicus rugioperculatus in coconut trees using a mathematical model. In this system of ordinary differential equation, the pest-predator interaction is modeled using Holling type III functional response. The parametric values are calculated from the experimental results and are tabulated. An approximate analytical solution for the system has been derived. The homotopy analysis method proves to be a suitable method for creating solutions that are valid even for moderate to large parameter values, hence we employ the same to solve this nonlinear model. The $\hbar$-curves, which give the admissible region of $\hbar$, are provided to validate the region of convergence. We have derived the approximate solution at fifth order and stopped at this order since we obtain a more approximate solution in this iteration. Numerical simulation is obtained through MATLAB. The analytical results are compared with numerical simulation and are found to be in good agreement. The biological interpretation of figures implies that the use of a predator reduces the whitefly’s growth to a greater extent.

  8. Bashkirtseva I.A., Perevalova T.V., Ryashko L.B.
    Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356

    This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.

  9. Methi G., Kumar A.
    Numerical Solution of Linear and Higher-order Delay Differential Equations using the Coded Differential Transform Method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1091-1099

    The aim of the paper is to obtain a numerical solution for linear and higher-order delay differential equations (DDEs) using the coded differential transform method (CDTM). The CDTM is developed and applied to delay problems to show the efficiency of the proposed method. The coded differential transform method is a combination of the differential transform method and Mathematica software. We construct recursive relations for a few delay problems, which results in simultaneous equations, and solve them to obtain various series solution terms using the coded differential transform method. The numerical solution obtained by CDTM is compared with an exact solution. Numerical results and error analysis are presented for delay differential equations to show that the proposed method is suitable for solving delay differential equations. It is established that the delay differential equations under discussion are solvable in a specific domain. The error between the CDTM solution and the exact solution becomes very small if more terms are included in the series solution. The coded differential transform method reduces complex calculations, avoids discretization, linearization, and saves calculation time. In addition, it is easy to implement and robust. Error analysis shows that CDTM is consistent and converges fast. We obtain more accurate results using the coded differential transform method as compared to other methods.

  10. Kazarnikov A.V.
    Analysing the impact of migration on background social strain using a continuous social stratification model
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673

    The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"