Результаты поиска по 'stability analysis':
Найдено статей: 58
  1. Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.

    Views (last year): 9. Citations: 1 (RSCI).
  2. Fomin A.A., Fomina L.N.
    On the convergence of the implicit iterative line-by-line recurrence method for solving difference elliptical equations
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 857-880

    In the article a theory of the implicit iterative line-by-line recurrence method for solving the systems of finite-difference equations which arise as a result of approximation of the two-dimensional elliptic differential equations on a regular grid is stated. On the one hand, the high effectiveness of the method has confirmed in practice. Some complex test problems, as well as several problems of fluid flow and heat transfer of a viscous incompressible liquid, have solved with its use. On the other hand, the theoretical provisions that explain the high convergence rate of the method and its stability are not yet presented in the literature. This fact is the reason for the present investigation. In the paper, the procedure of equivalent and approximate transformations of the initial system of linear algebraic equations (SLAE) is described in detail. The transformations are presented in a matrix-vector form, as well as in the form of the computational formulas of the method. The key points of the transformations are illustrated by schemes of changing of the difference stencils that correspond to the transformed equations. The canonical form of the method is the goal of the transformation procedure. The correctness of the method follows from the canonical form in the case of the solution convergence. The estimation of norms of the matrix operators is carried out on the basis of analysis of structures and element sets of the corresponding matrices. As a result, the convergence of the method is proved for arbitrary initial vectors of the solution of the problem.

    The norm of the transition matrix operator is estimated in the special case of weak restrictions on a desired solution. It is shown, that the value of this norm decreases proportionally to the second power (or third degree, it depends on the version of the method) of the grid step of the problem solution area in the case of transition matrix order increases. The necessary condition of the method stability is obtained by means of simple estimates of the vector of an approximate solution. Also, the estimate in order of magnitude of the optimum iterative compensation parameter is given. Theoretical conclusions are illustrated by using the solutions of the test problems. It is shown, that the number of the iterations required to achieve a given accuracy of the solution decreases if a grid size of the solution area increases. It is also demonstrated that if the weak restrictions on solution are violated in the choice of the initial approximation of the solution, then the rate of convergence of the method decreases essentially in full accordance with the deduced theoretical results.

    Views (last year): 15. Citations: 1 (RSCI).
  3. In recent years, the use of neural network models for solving aerodynamics problems has become widespread. These models, trained on a set of previously obtained solutions, predict solutions to new problems. They are, in essence, interpolation algorithms. An alternative approach is to construct a neural network operator. This is a neural network that reproduces a numerical method used to solve a problem. It allows to find the solution in iterations. The paper considers the construction of such an operator using the UNet neural network with a spatial attention mechanism. It solves flow problems on a rectangular uniform grid that is common to a streamlined body and flow field. A correction mechanism is proposed to clarify the obtained solution. The problem of the stability of such an algorithm for solving a stationary problem is analyzed, and a comparison is made with other variants of its construction, including pushforward trick and positional encoding. The issue of selecting a set of iterations for forming a train dataset is considered, and the behavior of the solution is assessed using repeated use of a neural network operator.

    A demonstration of the method is provided for the case of flow around a rounded plate with a turbulent flow, with various options for rounding, for fixed parameters of the incoming flow, with Reynolds number $\text{Re} = 10^5$ and Mach number $M = 0.15$. Since flows with these parameters of the incoming flow can be considered incompressible, only velocity components are directly studied. At the same time, the neural network model used to construct the operator has a common decoder for both velocity components. Comparison of flow fields and velocity profiles along the normal and outline of the body, obtained using a neural network operator and numerical methods, is carried out. Analysis is performed both on the plate and rounding. Simulation results confirm that the neural network operator allows finding a solution with high accuracy and stability.

  4. The mathematical model of a three-layered Co/Cu/Co nanopillar for MRAM cell with one fixed and one free layer was investigated in the approximation of uniformly distributed magnetization. The anisotropy axis is perpendicular to the layers (so-called perpendicular anisotropy). Initially the magnetization of the free layer is oriented along the anisotropy axis in the position accepted to be “zero”. Simultaneous magnetic field and spinpolarized current engaging can reorient the magnetization to another position which in this context can be accepted as “one”. The mathematical description of the effect is based on the classical vector Landau–Lifshits equation with the dissipative term in the Gilbert form. In our model we took into account the interactions of the magnetization with an external magnetic field and such effective magnetic fields as an anisotropy and demagnetization ones. The influence of the spin-polarized injection current is taken into account in the form of Sloczewski–Berger term. The model was reduced to the set of three ordinary differential equations with the first integral. It was shown that at any current and field the dynamical system has two main equilibrium states on the axis coincident with anisotropy axis. It was ascertained that in contrast with the longitudinal-anisotropy model, in the model with perpendicular anisotropy there are no other equilibrium states. The stability analysis of the main equilibrium states was performed. The bifurcation diagrams characterizing the magnetization dynamics at different values of the control parameters were built. The classification of the phase portraits on the unit sphere was performed. The features of the dynamics at different values of the parameters were studied and the conditions of the magnetization reorientation were determined. The trajectories of magnetization switching were calculated numerically using the Runge–Kutta method. The parameter values at which limit cycles exist were determined. The threshold values for the switching current were found analytically. The threshold values for the structures with longitudinal and perpendicular anisotropy were compared. It was established that in the structure with the perpendicular anisotropy at zero field the switching current is an order lower than in the structure with the longitudinal one.

    Views (last year): 4. Citations: 1 (RSCI).
  5. The well-known evolutionary equation of mathematical physics, which in modern mathematical literature is called the Kuramoto – Sivashinsky equation, is considered. In this paper, this equation is studied in the original edition of the authors, where it was proposed, together with the homogeneous Neumann boundary conditions.

    The question of the existence and stability of local attractors formed by spatially inhomogeneous solutions of the boundary value problem under study has been studied. This issue has become particularly relevant recently in connection with the simulation of the formation of nanostructures on the surface of semiconductors under the influence of an ion flux or laser radiation. The question of the existence and stability of second-order equilibrium states has been studied in two different ways. In the first of these, the Galerkin method was used. The second approach is based on using strictly grounded methods of the theory of dynamic systems with infinite-dimensional phase space: the method of integral manifolds, the theory of normal forms, asymptotic methods.

    In the work, in general, the approach from the well-known work of D.Armbruster, D.Guckenheimer, F.Holmes is repeated, where the approach based on the application of the Galerkin method is used. The results of this analysis are substantially supplemented and developed. Using the capabilities of modern computers has helped significantly complement the analysis of this task. In particular, to find all the solutions in the fourand five-term Galerkin approximations, which for the studied boundary-value problem should be interpreted as equilibrium states of the second kind. An analysis of their stability in the sense of A. M. Lyapunov’s definition is also given.

    In this paper, we compare the results obtained using the Galerkin method with the results of a bifurcation analysis of a boundary value problem based on the use of qualitative analysis methods for infinite-dimensional dynamic systems. Comparison of two variants of results showed some limited possibilities of using the Galerkin method.

    Views (last year): 27.
  6. Krat Y.G., Potapov I.I.
    Movement of sediment over periodic bed
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 47-60

    The movement of bed load along the closed conduit can lead to a loss of stability of the bed surface, when bed waves arise at the bed of the channel. Investigation of the development of bed waves is associated with the possibility of determining of the bed load nature along the bed of the periodic form. Despite the great attention of many researchers to this problem, the question of the development of bed waves remains open at the present time. This is due to the fact that in the analysis of this process many researchers use phenomenological formulas for sediment transport in their work. The results obtained in such models allow only assess qualitatly the development of bed waves. For this reason, it is of interest to carry out an analysis of the development of bed waves using the analytical model for sediment transport.

    The paper proposed two-dimensional profile mathematical riverbed model, which allows to investigate the movement of sediment over a periodic bed. A feature of the mathematical model is the possibility of calculating the bed load transport according to an analytical model with the Coulomb–Prandtl rheology, which takes into account the influence of bottom surface slopes, bed normal and tangential stresses on the movement of bed material. It is shown that when the bed material moves along the bed of periodic form, the diffusion and pressure transport of bed load are multidirectional and dominant with respect to the transit flow. Influence of the effects of changes in wave shape on the contribution of transit, diffusion and pressure transport to the total sediment transport has been studied. Comparison of the received results with numerical solutions of the other authors has shown their good qualitative initiation.

    Views (last year): 9.
  7. Grachev V.A., Nayshtut Yu.S.
    Buckling problems of thin elastic shells
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 775-787

    The article covers several mathematical problems relating to elastic stability of thin shells in view of inconsistencies that have been recently identified between the experimental data and the predictions based on the shallow- shell theory. It is highlighted that the contradictions were caused by new algorithms that enabled updating the values of the so called “low critical stresses” calculated in the 20th century and adopted as a buckling criterion for thin shallow shells by technical standards. The new calculations often find the low critical stress close to zero. Therefore, the low critical stress cannot be used as a safety factor for the buckling analysis of the thinwalled structure, and the equations of the shallow-shell theory need to be replaced with other differential equations. The new theory also requires a buckling criterion ensuring the match between calculations and experimental data.

    The article demonstrates that the contradiction with the new experiments can be resolved within the dynamic nonlinear three-dimensional theory of elasticity. The stress when bifurcation of dynamic modes occurs shall be taken as a buckling criterion. The nonlinear form of original equations causes solitary (solitonic) waves that match non-smooth displacements (patterns, dents) of the shells. It is essential that the solitons make an impact at all stages of loading and significantly increase closer to bifurcation. The solitonic solutions are illustrated based on the thin cylindrical momentless shell when its three-dimensional volume is simulated with twodimensional surface of the set thickness. It is noted that the pattern-generating waves can be detected (and their amplitudes can by identified) with acoustic or electromagnetic devices.

    Thus, it is technically possible to reduce the risk of failure of the thin shells by monitoring the shape of the surface with acoustic devices. The article concludes with a setting of the mathematical problems requiring the solution for the reliable numerical assessment of the buckling criterion for thin elastic shells.

    Views (last year): 23.
  8. Krivovichev G.V.
    Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 485-500

    Stability of finite difference schemes of lattice Boltzmann method for modelling of 1D diffusion for cases of D1Q2 and D1Q3 lattices is investigated. Finite difference schemes are constructed for the system of linear Bhatnagar–Gross–Krook (BGK) kinetic equations on single particle distribution functions. Brief review of articles of other authors is realized. With application of multiscale expansion by Chapman–Enskog method it is demonstrated that system of BGK kinetic equations at small Knudsen number is transformated to scalar linear diffusion equation. The solution of linear diffusion equation is obtained as a sum of single particle distribution functions. The method of linear travelling wave propagation is used to show the unconditional asymptotic stability of the solution of Cauchy problem for the system of BGK equations at all values of relaxation time. Stability of the scheme for D1Q2 lattice is demonstrated by the method of differential approximation. Stability condition is written in form of the inequality on values of relaxation time. The possibility of the reduction of stability analysis of the schemes for BGK equations to the analysis of special schemes for diffusion equation for the case of D1Q3 lattice is investigated. Numerical stability investigation is realized by von Neumann method. Absolute values of the eigenvalues of the transition matrix are investigated in parameter space of the schemes. It is demonstrated that in wide range of the parameters changing the values of modulas of eigenvalues are lower than unity, so the scheme is stable with respect to initial conditions.

    Views (last year): 2. Citations: 1 (RSCI).
  9. Bashkirtseva I.A., Boyarshinova P.V., Ryazanova T.V., Ryashko L.B.
    Analysis of noise-induced destruction of coexistence regimes in «prey–predator» population model
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660

    The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.

    Views (last year): 14. Citations: 4 (RSCI).
  10. WENO schemes (weighted, essentially non oscillating) are currently having a wide range of applications as approximate high order schemes for discontinuous solutions of partial differential equations. These schemes are used for direct numerical simulation (DNS) and large eddy simmulation in the gas dynamic problems, problems for DNS in MHD and even neutron kinetics. This work is dedicated to clarify some characteristics of WENO schemes and numerical simulation of specific tasks. Results of the simulations can be used to clarify the field of application of these schemes. The first part of the work contained proofs of the approximation properties, stability and convergence of WENO5, WENO7, WENO9, WENO11 and WENO13 schemes. In the second part of the work the modified wave number analysis is conducted that allows to conclude the dispersion and dissipative properties of schemes. Further, a numerical simulation of a number of specific problems for hyperbolic equations is conducted, namely for advection equations (one-dimensional and two-dimensional), Hopf equation, Burgers equation (with low dissipation) and equations of non viscous gas dynamics (onedimensional and two-dimensional). For each problem that is implying a smooth solution, the practical calculation of the order of approximation via Runge method is performed. The influence of a time step on nonlinear properties of the schemes is analyzed experimentally in all problems and cross checked with the first part of the paper. In particular, the advection equations of a discontinuous function and Hopf equations show that the failure of the recommendations from the first part of the paper leads first to an increase in total variation of the solution and then the approximation is decreased by the non-linear dissipative mechanics of the schemes. Dissipation of randomly distributed initial conditions in a periodic domain for one-dimensional Burgers equation is conducted and a comparison with the spectral method is performed. It is concluded that the WENO7–WENO13 schemes are suitable for direct numerical simulation of turbulence. At the end we demonstrate the possibility of the schemes to be used in solution of initial-boundary value problems for equations of non viscous gas dynamics: Rayleigh–Taylor instability and the reflection of the shock wave from a wedge with the formation a complex configuration of shock waves and discontinuities.

    Views (last year): 13.
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"