All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Wavelet transform with the Morlet wavelet: Calculation methods based on a solution of diffusion equations
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 5-12Views (last year): 5. Citations: 3 (RSCI).Two algorithms of evaluation of the continuous wavelet transform with the Morlet wavelet are presented. The first one is the solution of PDE with transformed signal, which plays a role of the initial value. The second allows to explore the influence of central frequency variation via the diffusion smoothing of the data modulated by the harmonic functions. These approaches are illustrated by the analysis of the chaotic oscillations of the coupled Roessler systems.
-
Continuum deployable shells made of thin plates
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 3-29Citations: 3 (RSCI).This paper covers deployable systems assembled from trapezium plates. When the plate package is unwrapped, a net shell with six loop cells is formed. It is proved that additional degrees of freedom appear in case of certain correlation between the sizes of the six loop faces. When thin plates were used, the continuum approximation of the deployed net could be interpreted as a shell with a wide variety of local curvatures. Kinematics of the continuum model is analyzed by the method of Cartan moving hedron. Mechanical behavior of continuum nets is studied when cylindrical hinges between the plates are completed of shape memory plastic materials. The paper researches into shell transformations from one stable form to the other. Various practical applications of the continuum nets are demonstrated.
-
Global bifurcation analysis of a rational Holling system
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545Views (last year): 11.In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.
-
Designing a zero on a linear manifold, a polyhedron, and a vertex of a polyhedron. Newton methods of minimization
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 563-591Views (last year): 6.We consider the approaches to the construction of methods for solving four-dimensional programming problems for calculating directions for multiple minimizations of smooth functions on a set of a given set of linear equalities. The approach consists of two stages.
At the first stage, the problem of quadratic programming is transformed by a numerically stable direct multiplicative algorithm into an equivalent problem of designing the origin of coordinates on a linear manifold, which defines a new mathematical formulation of the dual quadratic problem. For this, a numerically stable direct multiplicative method for solving systems of linear equations is proposed, taking into account the sparsity of matrices presented in packaged form. The advantage of this approach is to calculate the modified Cholesky factors to construct a substantially positive definite matrix of the system of equations and its solution in the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made in the position of the next processed row of the matrix, which allows the use of static data storage formats.
At the second stage, the necessary and sufficient optimality conditions in the form of Kuhn–Tucker determine the calculation of the direction of descent — the solution of the dual quadratic problem is reduced to solving a system of linear equations with symmetric positive definite matrix for calculating of Lagrange's coefficients multipliers and to substituting the solution into the formula for calculating the direction of descent.
It is proved that the proposed approach to the calculation of the direction of descent by numerically stable direct multiplicative methods at one iteration requires a cubic law less computation than one iteration compared to the well-known dual method of Gill and Murray. Besides, the proposed method allows the organization of the computational process from any starting point that the user chooses as the initial approximation of the solution.
Variants of the problem of designing the origin of coordinates on a linear manifold, a convex polyhedron and a vertex of a convex polyhedron are presented. Also the relationship and implementation of methods for solving these problems are described.
-
Wandering symmetries of the Lagrange's equations
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 13-17Views (last year): 4.The dynamic process can be in equal degree adequately prototyped by a family of Lagrange's systems. Symmetry group ‘wanders’ on this family: systems are transformed from one into another. In this work we show that under determined condition the first integral can be obtained by a simple calculations on some of such groups. The main purpose of the work is to show usefulness of wandering symmetry concept. The considered example: flat motion of a charged particle in magnetic field in presence of viscous friction. With the help of three wandering symmetry first integral is calculated.
-
Symmetries of the Hamilton–Jacobi equation
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 253-265Views (last year): 1. Citations: 1 (RSCI).The notion of symmetry transformations of the Hamilton–Jacobi equation. For the group of symmetries is shown how to be associated with the Hamiltonian function coefficients of the infinitesimal operator of the group. The examples of calculation of the symmetries and examples calculations based on the full symmetry of the integrals.
-
Numerical-analytical integrating the equations of a point mass projectile motion at the velocities close to sonic peak of air drag exponent
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 785-798It is shown that the relative air drag force for many different ballistic profiles obeys the law as follows R(V)=Mg·w(V/WT)n(V) with V being the velocity, WT — some threshold velocity close to that of sound, w equals to R(WT) and n(V) is the exponent in broken power Gȃvre formula. Using the Legendre transformation and in frames of perturbation approach received was the expression for addition δabb''(b) to resolvent function abb''(b), where a(b) is an intercept and b=tgθ, θ — inclination angle.
-
On-line signature identification using a short-time Fourier transform and the radial basis
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 357-364Views (last year): 4. Citations: 3 (RSCI).This paper describes a method of on-line signature identification using the short-time Fourier transform and wavelet transform with radial basis of a special kind. In carrying out the identification, we use dynamic properties signature. We adduce the assessment of the reliability of the proposed procedure.
-
Integration the relativistic wave equations in Bianchi IX cosmology model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.
Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.
The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.
Keywords: noncommutative integration, Bianchi IX.Views (last year): 5. -
On the convergence of the implicit iterative line-by-line recurrence method for solving difference elliptical equations
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 857-880Views (last year): 15. Citations: 1 (RSCI).In the article a theory of the implicit iterative line-by-line recurrence method for solving the systems of finite-difference equations which arise as a result of approximation of the two-dimensional elliptic differential equations on a regular grid is stated. On the one hand, the high effectiveness of the method has confirmed in practice. Some complex test problems, as well as several problems of fluid flow and heat transfer of a viscous incompressible liquid, have solved with its use. On the other hand, the theoretical provisions that explain the high convergence rate of the method and its stability are not yet presented in the literature. This fact is the reason for the present investigation. In the paper, the procedure of equivalent and approximate transformations of the initial system of linear algebraic equations (SLAE) is described in detail. The transformations are presented in a matrix-vector form, as well as in the form of the computational formulas of the method. The key points of the transformations are illustrated by schemes of changing of the difference stencils that correspond to the transformed equations. The canonical form of the method is the goal of the transformation procedure. The correctness of the method follows from the canonical form in the case of the solution convergence. The estimation of norms of the matrix operators is carried out on the basis of analysis of structures and element sets of the corresponding matrices. As a result, the convergence of the method is proved for arbitrary initial vectors of the solution of the problem.
The norm of the transition matrix operator is estimated in the special case of weak restrictions on a desired solution. It is shown, that the value of this norm decreases proportionally to the second power (or third degree, it depends on the version of the method) of the grid step of the problem solution area in the case of transition matrix order increases. The necessary condition of the method stability is obtained by means of simple estimates of the vector of an approximate solution. Also, the estimate in order of magnitude of the optimum iterative compensation parameter is given. Theoretical conclusions are illustrated by using the solutions of the test problems. It is shown, that the number of the iterations required to achieve a given accuracy of the solution decreases if a grid size of the solution area increases. It is also demonstrated that if the weak restrictions on solution are violated in the choice of the initial approximation of the solution, then the rate of convergence of the method decreases essentially in full accordance with the deduced theoretical results.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"