All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
New algorithms for composing differential equations of the motion of the exoskeleton with variable length of the links and the control of hinge-joint
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 201-210Views (last year): 15. Citations: 2 (RSCI).The article discusses the model of the anthropomorphic type of mechanism of the exoskeleton with links of variable length. Four models of parts of variable length are considered comprehensively: the model link of the exoskeleton of variable length with a resilient member and a rigid strong core; the model of the telescopic link; the model link with the masses in the hinge-joint between them; the link model with an arbitrary number of masses. The differential equations of motion in the form of Lagrange equations of the second kind are made. On the basis of analysis of differential equations of motion for multi-link rod of a mechanical system type, exoskeleton revealed their structure, which allowed us to represent them in vector-matrix form. The General pattern of building matrices are established for the first time and the generalization of the expressions for elements of matrices in two-dimensional case are obtained. New recursive and matrix methods of composing of differential equations of motion are given. A unified approach to constructing differential equations of motion of the exoskeleton based on the developed recursive and matrix methods write differential equations of motion of the proposed exoskeleton. Comparison of the time of writing the differential equations of motion proposed methods, in comparison with the Lagrange equations of the second kind, in the system of computer mathematics Mathematica conducted. An analytical study of the model of the exoskeleton carried out. It was found that for mechanisms with n movable links of the Cauchy problem for systems of differential equations of motion for any initial conditions there is no single and unlimited continue. Control of the exoskeleton is accomplished using the torques which are located in the hinge-joints in the joints of the links and simulating control actions. Numerical investigation of a model of the exoskeleton is made, a comparison of results of calculations for exoskeletons with various models of units is held. A numerical study of the empirical evidence about the man and his movements is used. It is established that the choice structure of the exoskeleton model with lumped masses is more preferable to a model with perfectly rigid strong core. As an exoskeleton, providing comfortable movement of people, and you should repeat the properties of the musculoskeletal system.
-
The computational algorithm for studying internal laminar flows of a multicomponent gas with different-scale chemical processes
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1169-1187The article presented the computational algorithm developed to study chemical processes in the internal flows of a multicomponent gas under the influence of laser radiation. The mathematical model is the gas dynamics’ equations with chemical reactions at low Mach numbers. It takes into account dissipative terms that describe the dynamics of a viscous heat-conducting medium with diffusion, chemical reactions and energy supply by laser radiation. This mathematical model is characterized by the presence of several very different time and spatial scales. The computational algorithm is based on a splitting scheme by physical processes. Each time integration step is divided into the following blocks: solving the equations of chemical kinetics, solving the equation for the radiation intensity, solving the convection-diffusion equations, calculating the dynamic component of pressure and calculating the correction of the velocity vector. The solution of a stiff system of chemical kinetics equations is carried out using a specialized explicit second-order accuracy scheme or a plug-in RADAU5 module. Numerical Rusanov flows and a WENO scheme of an increased order of approximation are used to find convective terms in the equations. The code based on the obtained algorithm has been developed using MPI parallel computing technology. The developed code is used to calculate the pyrolysis of ethane with radical reactions. The superequilibrium concentrations’ formation of radicals in the reactor volume is studied in detail. Numerical simulation of the reaction gas flow in a flat tube with laser radiation supply is carried out, which is in demand for the interpretation of experimental results. It is shown that laser radiation significantly increases the conversion of ethane and yields of target products at short lengths closer to the entrance to the reaction zone. Reducing the effective length of the reaction zone allows us to offer new solutions in the design of ethane conversion reactors into valuable hydrocarbons. The developed algorithm and program will find their application in the creation of new technologies of laser thermochemistry.
-
Numerical simulation of converging spherical shock waves with symmetry violation
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 59-71The study of the development of π-periodic perturbations of a converging spherical shock wave leading to cumulation limitation is performed. The study is based on 3D hydrodynamic calculations with the Carnahan – Starling equation of state for hard sphere fluid. The method of solving the Euler equations on moving (compressing) grids allows one to trace the evolution of the converging shock wave front with high accuracy in a wide range of its radius. The compression rate of the computational grid is adapted to the motion of the shock wave front, while the motion of the boundaries of the computational domain satisfy the condition of its supersonic velocity relative to the medium. This leads to the fact that the solution is determined only by the initial data at the grid compression stage. The second order TVD scheme is used to reconstruct the vector of conservative variables at the boundaries of the computational cells in combination with the Rusanov scheme for calculating the numerical vector of flows. The choice is due to a strong tendency for the manifestation of carbuncle-type numerical instability in the calculations, which is known for other classes of flows. In the three-dimensional case of the observed force, the carbuncle effect was obtained for the first time, which is explained by the specific nature of the flow: the concavity of the shock wave front in the direction of motion, the unlimited (in the symmetric case) growth of the Mach number, and the stationarity of the front on the computational grid. The applied numerical method made it possible to study the detailed flow pattern on the scale of cumulation termination, which is impossible within the framework of the Whitham method of geometric shock wave dynamics, which was previously used to calculate converging shock waves. The study showed that the limitation of cumulation is associated with the transition from the Mach interaction of converging shock wave segments to a regular one due to the progressive increase in the ratio of the azimuthal velocity at the shock wave front to the radial velocity with a decrease in its radius. It was found that this ratio is represented as a product of a limited oscillating function of the radius and a power function of the radius with an exponent depending on the initial packing density in the hard sphere model. It is shown that increasing the packing density parameter in the hard sphere model leads to a significant increase in the pressures achieved in a shock wave with broken symmetry. For the first time in the calculation, it is shown that at the scale of cumulation termination, the flow is accompanied by the formation of high-energy vortices, which involve the substance that has undergone the greatest shock-wave compression. Influencing heat and mass transfer in the region of greatest compression, this circumstance is important for current practical applications of converging shock waves for the purpose of initiating reactions (detonation, phase transitions, controlled thermonuclear fusion).
-
Simulation model of spline interpolation of piecewise linear trajectory for CNC machine tools
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 225-242In traditional CNC systems, each segment of a piecewise linear trajectory is described by a separate block of the control program. In this case, a trapezoidal trajectory of movement is formed, and the stitching of individual sections is carried out at zero values of speed and acceleration. Increased productivity is associated with continuous processing, which in modern CNC systems is achieved through the use of spline interpolation. For a piecewise linear trajectory, which is basic for most products, the most appropriate is a first-degree spline. However, even in the simplest case of spline interpolation, the closed nature of the basic software from leading manufacturers of CNC systems limits the capabilities of not only developers, but also users. Taking this into account, the purpose of this work is a detailed study of the structural organization and operation algorithms of the simulation model of piecewise linear spline interpolation. Limitations on jerk and acceleration are considered as the main measure to reduce dynamic processing errors. In this case, special attention is paid to the S-shaped shape of the speed curve in the acceleration and deceleration sections. This is due to the conditions for the implementation of spline interpolation, one of which is the continuity of movement, which is ensured by the equality of the first and second derivatives when joining sections of the trajectory. Such a statement corresponds to the principles of implementing combined control systems of a servo electric drive, which provide partial invariance to control and disturbing effects. The reference model of a spline interpolator is adopted as the basis of the structural organization. The issues of processing scaling, which are based on a decrease in the vector speed in relation to the base value, are also considered. This allows increasing the accuracy of movements. It is shown that the range of changes in the speed of movements can be more than ten thousand, and is limited only by the speed control capabilities of the actuators.
Keywords: piecewise linear trajectory, jerk, S-shaped speed curve, spline, processing scale, servo drive. -
On numerical solution of joint inverse geophysical problems with structural constraints
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 329-343Inverse geophysical problems are difficult to solve due to their mathematically incorrect formulation and large computational complexity. Geophysical exploration in frontier areas is even more complicated due to the lack of reliable geological information. In this case, inversion methods that allow interpretation of several types of geophysical data together are recognized to be of major importance. This paper is dedicated to one of such inversion methods, which is based on minimization of the determinant of the Gram matrix for a set of model vectors. Within the framework of this approach, we minimize a nonlinear functional, which consists of squared norms of data residual of different types, the sum of stabilizing functionals and a term that measures the structural similarity between different model vectors. We apply this approach to seismic and electromagnetic synthetic data set. Specifically, we study joint inversion of acoustic pressure response together with controlled-source electrical field imposing structural constraints on resulting electrical conductivity and P-wave velocity distributions.
We start off this note with the problem formulation and present the numerical method for inverse problem. We implemented the conjugate-gradient algorithm for non-linear optimization. The efficiency of our approach is demonstrated in numerical experiments, in which the true 3D electrical conductivity model was assumed to be known, but the velocity model was constructed during inversion of seismic data. The true velocity model was based on a simplified geology structure of a marine prospect. Synthetic seismic data was used as an input for our minimization algorithm. The resulting velocity model not only fit to the data but also has structural similarity with the given conductivity model. Our tests have shown that optimally chosen weight of the Gramian term may improve resolution of the final models considerably.
-
Analysis of the dispersion characteristics of metallic photonic crystals by the plane-wave expansion method
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1059-1068A method for studying the dispersion characteristics of photonic crystals — media with a dielectric constant that varies periodically in space — is considered. The method is based on the representation of the wave functions and permittivity of a periodic medium in the form of Fourier series and their subsequent substitution into the wave equation, which leads to the formulation of the dispersion equation. Using the latter, for each value of the wave vector it is possible determined a set of eigen frequencies. Each of eigen frequency forms a separate dispersion curve as a continuous function of the wave number. The Fourier expansion coefficients of the permittivity, which depend on the vectors of the reciprocal lattice of the photonic crystal, are determined on the basis of data on the geometric characteristics of the elements that form the crystal, their electrophysical properties and the density of the crystal. The solution of the dispersion equation found makes it possible to obtain complete information about the number of modes propagating in a periodic structure at different frequencies, and about the possibility of forming band gaps, i.e. frequency ranges within which wave propagation through a photonic crystal is impossible. The focus of this work is on the application of this method to the analysis of the dispersion properties of metallic photonic crystals. The difficulties that arise in this case due to the presence of intrinsic dispersion properties of the metals that form the elements of the crystal are overcome by an analytical description of their permittivity based on the model of free electrons. As a result, a dispersion equation is formulated, the numerical solution of which is easily algorithmized. That makes possible to determine the dispersion characteristics of metallic photonic crystals with arbitrary parameters. Obtained by this method the results of calculation of dispersion diagrams, which characterize two-dimensional metal photonic crystals, are compared with experimental data and numerical results obtained using the method of self-consistent equations. Their good agreement is demonstrated.
-
Algorithm for vortices identification based on flow velocity vectors using the simplest mathematical model of vortex dynamics
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1477-1493An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.
-
Mathematical modeling of hydrodynamics problems of the Azov Sea on a multiprocessor computer system
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 647-672The article is devoted to modeling the shallow water hydrodynamic processes using the example of the Azov Sea. The article presents a mathematical model of the hydrodynamics of a shallow water body, which allows one to calculate three-dimensional fields of the velocity vector of movement of the aquatic environment. Application of regularizers according to B.N.Chetverushkin in the continuity equation led to a change in the method of calculating the pressure field, based on solving the wave equation. A discrete finite-difference scheme has been constructed for calculating pressure in an area whose linear vertical dimensions are significantly smaller than those in horizontal coordinate directions, which is typical for the geometry of shallow water bodies. The method and algorithm for solving grid equations with a tridiagonal preconditioner are described. The proposed method is used to solve grid equations that arise when calculating pressure for the three-dimensional problem of hydrodynamics of the Azov Sea. It is shown that the proposed method converges faster than the modified alternating triangular method. A parallel implementation of the proposed method for solving grid equations is presented and theoretical and practical estimates of the acceleration of the algorithm are carried out taking into account the latency time of the computing system. The results of computational experiments for solving problems of hydrodynamics of the Sea of Azov using the hybrid MPI + OpenMP technology are presented. The developed models and algorithms were used to reconstruct the environmental disaster that occurred in the Sea of Azov in 2001 and to solve the problem of the movement of the aquatic environment in estuary areas. Numerical experiments were carried out on the K-60 hybrid computing cluster of the Keldysh Institute of Applied Mathematics of Russian Academy of Sciences.
-
Incomplete systems of linear equations with restrictions of variable values
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 719-745Views (last year): 24. Citations: 3 (RSCI).The problem is formulated for description of objects having various natures which uses a system of linear equations with variable number exceeding the number of the equations. An important feature of this problem that substantially complicates its solving is the existing of restrictions imposed on a number of the variables. In particular, the choice of biochemical reaction aggregate that converts a preset substrate (a feedstock) into a preset product belongs to this kind of problems. In this case, unknown variables are the rates of biochemical reactions which form a vector to be determined. Components of this vector are subdivided into two groups: 1) the defined components, $\vec{y}$; 2) those dependent on the defined ones, $\vec{x}$. Possible configurations of the domain of $\vec{y}$ values permitted by restrictions imposed upon $\vec{x}$ components have been studied. It has been found that a part of restrictions may be superfluous and, therefore, unnecessary for the problem solving. Situations are analyzed when two or more $\vec{x}$ restrictions result in strict interconnections between $\vec{y}$ components. Methods of search of the basis solutions which take into account the peculiarities of this problem are described. Statement of the general problem and properties of its solutions are illustrated using a biochemical example.
-
The use of GIS INTEGRO in searching tasks for oil and gas deposits
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 439-444Views (last year): 4.GIS INTEGRO is the geo-information software system forming the basis for the integrated interpretation of geophysical data in researching a deep structure of Earth. GIS INTEGRO combines a variety of computational and analytical applications for the solution of geological and geophysical problems. It includes various interfaces that allow you to change the form of representation of data (raster, vector, regular and irregular network of observations), the conversion unit of map projections, application blocks, including block integrated data analysis and decision prognostic and diagnostic tasks.
The methodological approach is based on integration and integrated analysis of geophysical data on regional profiles, geophysical potential fields and additional geological information on the study area. Analytical support includes packages transformations, filtering, statistical processing, calculation, finding of lineaments, solving direct and inverse tasks, integration of geographic information.
Technology and software and analytical support was tested in solving problems tectonic zoning in scale 1:200000, 1:1000000 in Yakutia, Kazakhstan, Rostov region, studying the deep structure of regional profiles 1:S, 1-SC, 2-SAT, 3-SAT and 2-DV, oil and gas forecast in the regions of Eastern Siberia, Brazil.
The article describes two possible approaches of parallel calculations for data processing 2D or 3D nets in the field of geophysical research. As an example presented realization in the environment of GRID of the application software ZondGeoStat (statistical sensing), which create 3D net model on the basis of data 2d net. The experience has demonstrated the high efficiency of the use of environment of GRID during realization of calculations in field of geophysical researches.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




