All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Layered Bénard–Marangoni convection during heat transfer according to the Newton’s law of cooling
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940Views (last year): 10. Citations: 3 (RSCI).The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.
-
To the problem of program implementation of the potential-streaming method of description of physical and chemical process
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 817-832Views (last year): 12.In the framework of modern non-equilibrium thermodynamics (macroscopic approach of description and mathematical modeling of the dynamics of real physical and chemical processes), the authors developed a potential- flow method for describing and mathematical modeling of real physical and chemical processes applicable in the general case of real macroscopic physicochemical systems. In accordance with the potential-flow method, the description and mathematical modeling of these processes consists in determining through the interaction potentials of the thermodynamic forces driving these processes and the kinetic matrix determined by the kinetic properties of the system in question, which in turn determine the dynamics of the course of physicochemical processes in this system under the influence of the thermodynamic forces in it. Knowing the thermodynamic forces and the kinetic matrix of the system, the rates of the flow of physicochemical processes in the system are determined, and according to these conservation laws the rates of change of its state coordinates are determined. It turns out in this way a closed system of equations of physical and chemical processes in the system. Knowing the interaction potentials in the system, the kinetic matrices of its simple subsystems (individual processes that are conjugate to each other and not conjugate with other processes), the coefficients entering into the conservation laws, the initial state of the system under consideration, external flows into the system, one can obtain a complete dynamics of physicochemical processes in the system. However, in the case of a complex physico-chemical system in which a large number of physicochemical processes take place, the dimension of the system of equations for these processes becomes appropriate. Hence, the problem arises of automating the formation of the described system of equations of the dynamics of physical and chemical processes in the system under consideration. In this article, we develop a library of software data types that implement a user-defined physicochemical system at the level of its design scheme (coordinates of the state of the system, energy degrees of freedom, physico-chemical processes, flowing, external flows and the relationship between these listed components) and algorithms references in these types of data, as well as calculation of the described system parameters. This library includes both program types of the calculation scheme of the user-defined physicochemical system, and program data types of the components of this design scheme (coordinates of the system state, energy degrees of freedom, physicochemical processes, flowing, external flows). The relationship between these components is carried out by reference (index) addressing. This significantly speeds up the calculation of the system characteristics, because faster access to data.
-
The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 979-992The two significant geometric parameters are proposed that affect the physical quantities interpolation in the smoothed particle hydrodynamics method (SPH). They are: the smoothing coefficient which the particle size and the smoothing radius are connecting and the volume coefficient which determine correctly the particle mass for a given particles distribution in the medium.
In paper proposes a technique for these parameters influence assessing on the SPH method interpolations accuracy when the hydrostatic problem solving. The analytical functions of the relative error for the density and pressure gradient in the medium are introduced for the accuracy estimate. The relative error functions are dependent on the smoothing factor and the volume factor. Designating a specific interpolation form in SPH method allows the differential form of the relative error functions to the algebraic polynomial form converting. The root of this polynomial gives the smoothing coefficient values that provide the minimum interpolation error for an assigned volume coefficient.
In this work, the derivation and analysis of density and pressure gradient relative errors functions on a sample of popular nuclei with different smoothing radius was carried out. There is no common the smoothing coefficient value for all the considered kernels that provides the minimum error for both SPH interpolations. The nuclei representatives with different smoothing radius are identified which make it possible the smallest errors of SPH interpolations to provide when the hydrostatic problem solving. As well, certain kernels with different smoothing radius was determined which correct interpolation do not allow provide when the hydrostatic problem solving by the SPH method.
-
Approximate model of an axisymmetric flow of a non-compressible fluid in an infinitely long circular cylinder, the walls of which are composed of elastic rings, based on solutions of the Korteweg – de Vries equation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 375-394An approximate mathematical model of blood flow in an axisymmetric blood vessel is studied. Such a vessel is understood as an infinitely long circular cylinder, the walls of which consist of elastic rings. Blood is considered as an incompressible fluid flowing in this cylinder. Increased pressure causes radially symmetrical stretching of the elastic rings. Following J. Lamb, the rings are located close to each other so that liquid does not flow between them. To mentally realize this, it is enough to assume that the rings are covered with an impenetrable film that does not have elastic properties. Only rings have elasticity. The considered model of blood flow in a blood vessel consists of three equations: the continuity equation, the law of conservation of momentum and the equation of state. An approximate procedure for reducing the equations under consideration to the Korteweg – de Vries (KdV) equation is considered, which was not fully considered by J. Lamb, only to establish the dependence of the coefficients of the KdV equation on the physical parameters of the considered model of incompressible fluid flow in an axisymmetric vessel. From the KdV equation, by a standard transition to traveling waves, ODEs of the third, second and first orders are obtained, respectively. Depending on the different cases of arrangement of the three stationary solutions of the first-order ODE, a cnoidal wave and a soliton are standardly obtained. The main attention is paid to an unbounded periodic solution, which we call a degenerate cnoidal wave. Mathematically, cnoidal waves are described by elliptic integrals with parameters defining amplitudes and periods. Soliton and degenerate cnoidal wave are described by elementary functions. The hemodynamic meaning of these types of decisions is indicated. Due to the fact that the sets of solutions to first-, second- and third-order ODEs do not coincide, it has been established that the Cauchy problem for second- and third-order ODEs can be specified at all points, and for first-order ODEs only at points of growth or decrease. The Cauchy problem for a first-order ODE cannot be specified at extremum points due to the violation of the Lipschitz condition. The degeneration of the cnoidal wave into a degenerate cnoidal wave, which can lead to rupture of the vessel walls, is numerically illustrated. The table below describes two modes of approach of a cnoidal wave to a degenerate cnoidal wave.
-
Uncertainty factor in modeling dynamics of economic systems
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 261-276Views (last year): 39.Analysis and practical aspects of implementing developed in the control theory robust control methods in studying economic systems is carried out. The main emphasis is placed on studying results obtained for dynamical systems with structured uncertainty. Practical aspects of implementing such results in control of economic systems on the basis of dynamical models with uncertain parameters and perturbations (stabilization of price on the oil market and inflation in macroeconomic systems) are discussed. With the help of specially constructed aggregate model of oil price dynamics studied the problem of finding control which provides minimal deviation of price from desired levels over middle range period. The second real problem considered in the article consists in determination of stabilizing control providing minimal deviation of inflation from desired levels (on the basis of constructed aggregate macroeconomic model of the USA over middle range period).
Upper levels of parameters uncertainty and control laws guaranteeing stabilizability of the real considered economic systems have been found using the robust method of control with structured uncertainty. At the same time we have come to the conclusion that received estimates of parameters uncertainty upper levels are conservative. Monte-Carlo experiments carried out for the article made it possible to analyze dynamics of oil price and inflation under received limit levels of models parameters uncertainty and under implementing found robust control laws for the worst and the best scenarios. Results of these experiments show that received robust control laws may be successfully used under less stringent uncertainty constraints than it is guaranteed by sufficient conditions of stabilization.
-
The stoichiometry of metabolic pathways in the dynamics of cellular populations
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 455-475Views (last year): 5. Citations: 1 (RSCI).The problem has been considered, to what extent the kinetic models of cellular metabolism fit the matter which they describe. Foundations of stoichiometry of the whole metabolism and its large regions have been stated. A bioenergetic representation of stoichiometry based on a universal unit of chemical compound reductivity, viz., redoxon, has been described. Equations of mass-energy balance (bioenergetic variant of stoichiometry) have been derived for metabolic flows including those of protons possessing high electrochemical potential μH+, and high-energy compounds. Interrelations have been obtained which determine the biomass yield, rate of uptake of energy source for cell growth and other important physiological quantities as functions of biochemical characteristics of cellular energetics. The maximum biomass energy yield values have been calculated for different energy sources utilized by cells. These values coincide with those measured experimentally.
-
Mathematical and computational problems associated with the formation of structures in complex systems
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 805-815In this paper, the system of equations of magnetic hydrodynamics (MHD) is considered. The exact solutions found describe fluid flows in a porous medium and are related to the development of a core simulator and are aimed at creating a domestic technology «digital deposit» and the tasks of controlling the parameters of incompressible fluid. The central problem associated with the use of computer technology is large-dimensional grid approximations and high-performance supercomputers with a large number of parallel microprocessors. Kinetic methods for solving differential equations and methods for «gluing» exact solutions on coarse grids are being developed as possible alternatives to large-dimensional grid approximations. A comparative analysis of the efficiency of computing systems allows us to conclude that it is necessary to develop the organization of calculations based on integer arithmetic in combination with universal approximate methods. A class of exact solutions of the Navier – Stokes system is proposed, describing three-dimensional flows for an incompressible fluid, as well as exact solutions of nonstationary three-dimensional magnetic hydrodynamics. These solutions are important for practical problems of controlled dynamics of mineralized fluids, as well as for creating test libraries for verification of approximate methods. A number of phenomena associated with the formation of macroscopic structures due to the high intensity of interaction of elements of spatially homogeneous systems, as well as their occurrence due to linear spatial transfer in spatially inhomogeneous systems, are highlighted. It is fundamental that the emergence of structures is a consequence of the discontinuity of operators in the norms of conservation laws. The most developed and universal is the theory of computational methods for linear problems. Therefore, from this point of view, the procedures of «immersion» of nonlinear problems into general linear classes by changing the initial dimension of the description and expanding the functional spaces are important. Identification of functional solutions with functions makes it possible to calculate integral averages of an unknown, but at the same time its nonlinear superpositions, generally speaking, are not weak limits of nonlinear superpositions of approximations of the method, i.e. there are functional solutions that are not generalized in the sense of S. L. Sobolev.
-
Comparing of a quasisteady and nonsteady mathematical models of fluid flow in evaporating drop
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 811-825Views (last year): 4. Citations: 6 (RSCI).The work aims to study the admissibility of the quasi-steady approach application in fluid flow modeling inside of evaporating drops placed on a solid horizontal substrate. Non-steady model has been developed to compare results with a quasi-steady model. For the first time one-dimensional motion equation of fluid in a drop is proposed from a momentum conservation law. We have shown that inward flow is possible on the edge of drop in one-dimensional models. It may be explained by existence of stagnation points.
-
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"