All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Scientific and pedagogical schools founded by A. S. Kholodov
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579Views (last year): 42.In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.
The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.
This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.
On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).
There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.
The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.
-
Probabilistic aspects of “computer analogy” method for solving differential equations
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 21-31Views (last year): 3. Citations: 1 (RSCI).Method which allows to obtain explicit form of the solution as a part of power series of the argument step is developed. Formalization of characteristics of the algorithm analogous to operations of a computer is performed. The operation of transfer from one rank to another leads to a probability scheme of the algorithm that averages unknown intermediate steps in higher ranks of the series. The stochastic characteristics of the method are studied and illustrated. Examples of solving nonlinear equations and systems of nonlinear differential equations are presented.
-
The algorithm of the method for calculating quality classes’ boundaries for quantitative systems’ characteristics and for determination of interactions between characteristics. Part 1. Calculation for two quality classes
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 19-36Views (last year): 1. Citations: 6 (RSCI).A calculation method for boundaries of quality classes for quantitative systems characteristics of any nature is suggested. The method allows to determine interactions which are not detectable using correlation and regression analysis; quality classes’ boundaries of systems’ condition indicator and boundaries of the factors influencing this condition; contribution of the factors to a degree of «inadmissibility» of indicator values; sufficiency of the program observing the factors to describe the causes of «inadmissibility» of indicator values.
-
Numerical research elastic and strength characteristics of materials with coverings, received by an electrospark alloying
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 671-678Views (last year): 3. Citations: 5 (RSCI).In the work is numerically investigated the influence of elastic and strength characteristics of hard materials with coatings of refractory compounds, received electric-spark doping, at influence of temperature and power factors using the finite element method.
-
The algorithm of the method for calculating quality classes’ boundaries for quantitative systems’ characteristics and for determination of interactions between characteristics. Part 2. Calculation for three or more quality classes
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 37-54Views (last year): 4. Citations: 1 (RSCI).The method of calculation of the boundaries of quality classes for quantitative characteristics of systems with any properties is adapted to search for boundaries of three quality classes. In addition to other results, adaptation of the method allowed to determine boundaries between quality classes at simultaneous «unacceptability » of high and low values of indicator characteristic of the system condition and simultaneous «inadmissibility » of high and low values of factors affecting the system.
-
Physical research, numerical and analytical modeling of explosion phenomena. A review
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 505-546The review considers a wide range of phenomena and problems associated with the explosion. Detailed numerical studies revealed an interesting physical effect — the formation of discrete vortex structures directly behind the front of a shock wave propagating in dense layers of a heterogeneous atmosphere. The necessity of further investigation of such phenomena and the determination of the degree of their connection with the possible development of gas-dynamic instability is shown. The brief analysis of numerous works on the thermal explosion of meteoroids during their high-speed movement in the Earth’s atmosphere is given. Much attention is paid to the development of a numerical algorithm for calculating the simultaneous explosion of several fragments of meteoroids and the features of the development of such a gas-dynamic flow are analyzed. The work shows that earlier developed algorithms for calculating explosions can be successfully used to study explosive volcanic eruptions. The paper presents and discusses the results of such studies for both continental and underwater volcanoes with certain restrictions on the conditions of volcanic activity.
The mathematical analysis is performed and the results of analytical studies of a number of important physical phenomena characteristic of explosions of high specific energy in the ionosphere are presented. It is shown that the preliminary laboratory physical modeling of the main processes that determine these phenomena is of fundamental importance for the development of sufficiently complete and adequate theoretical and numerical models of such complex phenomena as powerful plasma disturbances in the ionosphere. Laser plasma is the closest object for such a simulation. The results of the corresponding theoretical and experimental studies are presented and their scientific and practical significance is shown. The brief review of recent years on the use of laser radiation for laboratory physical modeling of the effects of a nuclear explosion on asteroid materials is given.
As a result of the analysis performed in the review, it was possible to separate and preliminarily formulate some interesting and scientifically significant questions that must be investigated on the basis of the ideas already obtained. These are finely dispersed chemically active systems formed during the release of volcanoes; small-scale vortex structures; generation of spontaneous magnetic fields due to the development of instabilities and their role in the transformation of plasma energy during its expansion in the ionosphere. It is also important to study a possible laboratory physical simulation of the thermal explosion of bodies under the influence of highspeed plasma flow, which has only theoretical interpretations.
-
Views (last year): 3.
Road network infrastructure is the basis of any urban area. This article compares the structural characteristics (meshedness coefficient, clustering coefficient) road networks of Moscow center (Old Moscow), formed as a result of self-organization and roads near Leninsky Prospekt (postwar Moscow), which was result of cetralized planning. Data for the construction of road networks in the form of graphs taken from the Internet resource OpenStreetMap, allowing to accurately identify the coordinates of the intersections. According to the characteristics of the calculated Moscow road networks areas the cities with road network which have a similar structure to the two Moscow areas was found in foreign publications. Using the dual representation of road networks of centers of Moscow and St. Petersburg, studied the information and cognitive features of navigation in these tourist areas of the two capitals. In the construction of the dual graph of the studied areas were not taken into account the different types of roads (unidirectional or bi-directional traffic, etc), that is built dual graphs are undirected. Since the road network in the dual representation are described by a power law distribution of vertices on the number of edges (scale-free networks), exponents of these distributions were calculated. It is shown that the information complexity of the dual graph of the center of Moscow exceeds the cognitive threshold 8.1 bits, and the same feature for the center of St. Petersburg below this threshold, because the center of St. Petersburg road network was created on the basis of planning and therefore more easy to navigate. In conclusion, using the methods of statistical mechanics (the method of calculating the partition functions) for the road network of some Russian cities the Gibbs entropy were calculated. It was found that with the road network size increasing their entropy decreases. We discuss the problem of studying the evolution of urban infrastructure networks of different nature (public transport, supply , communication networks, etc.), which allow us to more deeply explore and understand the fundamental laws of urbanization.
-
Investigation of the relationships of the size and production characteristics of phyto- and zooplankton in the Vistula and Curonian lagoons of the Baltic Sea. Part 1. The statistical analysis of long-term observation data and development of the structure for the mathematical model of the plankton food chain
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 211-246In the paper the statistical relationships between the size and production characteristics of phytoplankton and zooplankton of the Vistula and Curonian lagoons, the Baltic Sea, were investigated. Research phytoplankton and zooplankton within the Russian part of the area of the Vistula and the Curonian lagoon was carried out on the monthly basis (from April to November) within the framework of long-term monitoring program on evaluating of ecological status of the lagoons. The size structure of plankton is the basis for understanding of the development of production processes, mechanisms of formation of the plankton species diversity and functioning of the lagoon ecosystems. As results of the work it was found that the maximum rate of photosynthesis and the integral value of the primary production with a change in cell volume of phytoplankton are changed according to a power law. The result shows that the smaller the size of algal cells in phytoplankton communities the more actively occur metabolism and the more effective they assimilate the solar energy. It is shown that the formation of plankton species diversity in ecosystems of lagoons is closely linked with the size structure of plankton communities and with features of development of the production processes. It is proposed the structure of a spatially homogenous mathematical model of the plankton food chain for the lagoon ecosystems taking into account the size spectrum and the characteristics of phytoplankton and zooplankton. The model parameters are the sizedependent indicators allometrically linked with average volumes of cells and organisms in different ranges of their sizes. In the model the algorithm for changes over time the coefficients of food preferences in the diet of zooplankton was proposed. Developed the size-dependent mathematical model of aquatic ecosystems allows to consider the impact of turbulent exchange on the size structure and temporal dynamics of the plankton food chain of the Vistula and Curonian lagoons. The model can be used to study the different regimes of dynamic behavior of plankton systems depending on the changes in the values of its parameters and external influences, as well as to quantify the redistribution of matter flows in ecosystems of the lagoons.
Keywords: ecosystem, nutrients, phytoplankton, zooplankton, plankton detritus, size structure, the maximum rate of photosynthesis, integrated primary production, zooplankton production, allometric scaling, Shannon index of species diversity, mathematical modeling, ecological simulation model, turbulent exchange.Views (last year): 9. -
Application of a hybrid large-particle method to the computation of the interaction of a shock wave with a gas suspension layer
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1323-1338For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.
On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.
The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.
-
Computational modeling of the thermal and physical processes in the high-temperature gas-cooled reactor
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 895-906The development of a high-temperature gas-cooled reactor (HTGR) constituting a part of nuclear power-and-process station and intended for large-scale hydrogen production is now in progress in the Russian Federation. One of the key objectives in development of the high-temperature gas-cooled reactor is the computational justification of the accepted design.
The article gives the procedure for the computational analysis of thermal and physical characteristics of the high-temperature gas-cooled reactor. The procedure is based on the use of the state-of-the-art codes for personal computer (PC).
The objective of thermal and physical analysis of the reactor as a whole and of the core in particular was achieved in three stages. The idea of the first stage is to justify the neutron physical characteristics of the block-type core during burn-up with the use of the MCU-HTR code based on the Monte Carlo method. The second and the third stages are intended to study the coolant flow and the temperature condition of the reactor and the core in 3D with the required degree of detailing using the FlowVision and the ANSYS codes.
For the purpose of carrying out the analytical studies the computational models of the reactor flow path and the fuel assembly column were developed.
As per the results of the computational modeling the design of the support columns and the neutron physical characteristics of the fuel assembly were optimized. This results in the reduction of the total hydraulic resistance of the reactor and decrease of the maximum temperature of the fuel elements.
The dependency of the maximum fuel temperature on the value of the power peaking factors determined by the arrangement of the absorber rods and of the compacts of burnable absorber in the fuel assembly is demonstrated.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"