All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.
Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.
В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.
Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.
Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.
Ключевые слова: оптимальная кластеризация, парные расстояния, центры кластеров, гибридный алгоритм, локальный поиск, роевой интеллект.
Tasks and algorithms for optimal clustering of multidimensional objects by a variety of heterogeneous indicators and their applications in medicine
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 673-693The work is devoted to the description of the author’s formal statements of the clustering problem for a given number of clusters, algorithms for their solution, as well as the results of using this toolkit in medicine.
The solution of the formulated problems by exact algorithms of implementations of even relatively low dimensions before proving optimality is impossible in a finite time due to their belonging to the NP class.
In this regard, we have proposed a hybrid algorithm that combines the advantages of precise methods based on clustering in paired distances at the initial stage with the speed of methods for solving simplified problems of splitting by cluster centers at the final stage. In the development of this direction, a sequential hybrid clustering algorithm using random search in the paradigm of swarm intelligence has been developed. The article describes it and presents the results of calculations of applied clustering problems.
To determine the effectiveness of the developed tools for optimal clustering of multidimensional objects according to a variety of heterogeneous indicators, a number of computational experiments were performed using data sets including socio-demographic, clinical anamnestic, electroencephalographic and psychometric data on the cognitive status of patients of the cardiology clinic. An experimental proof of the effectiveness of using local search algorithms in the paradigm of swarm intelligence within the framework of a hybrid algorithm for solving optimal clustering problems has been obtained.
The results of the calculations indicate the actual resolution of the main problem of using the discrete optimization apparatus — limiting the available dimensions of task implementations. We have shown that this problem is eliminated while maintaining an acceptable proximity of the clustering results to the optimal ones. The applied significance of the obtained clustering results is also due to the fact that the developed optimal clustering toolkit is supplemented by an assessment of the stability of the formed clusters, which allows for known factors (the presence of stenosis or older age) to additionally identify those patients whose cognitive resources are insufficient to overcome the influence of surgical anesthesia, as a result of which there is a unidirectional effect of postoperative deterioration of complex visual-motor reaction, attention and memory. This effect indicates the possibility of differentiating the classification of patients using the proposed tools.
-
Моделирование морфологии астроцитов с применением алгоритма колонизации пространства
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 465-481В настоящей работе рассматривается феноменологический алгоритм генерации морфологии глиальных клеток мозга — астроцитов, основанный на морфометрических данных протоплазматических астроцитов и общих тенденциях развития данного типа клеток in vivo, описанных в литературе. Мы адаптировали алгоритм пространственной колонизации (Space Colonization Algorithm, SCA) для процедурной генерации полной астроцитарной морфологии. Используемые в генерации аттракторные точки распределялись в пространственном объеме в соответствии с плотностью распределения синапсов в ткани гиппокампа на первой неделе постнатального развития мозга крысы. Нами были проанализированы и сопоставлены данные реконструкций астроцитарных морфологий на разных этапах развития мозга с использованием таких методик и параметров, как анализ Шолля, число точек ветвления, число терминалей, общая длина дерева и максимальный порядок ветвления. Используя данные морфометрического анализа протоплазматических астроцитов животных разных возрастов, были подобраны необходимые параметры генерации для получения наиболее реалистичных трехмерных моделей морфологии клеток. Мы показали, что разработанный нами алгоритм позволяет не только получить геометрию отдельных клеток, например, для задач вычислительной биологии, но и воссоздать феномен доменной организации клеточной популяции. Доменная организация в ходе генерации морфологий возникает из-за конкуренции клеток за территорию и присвоения их отростками уникальных аттракторных точек, которые становятся недоступными для других клеток и их отростков. Кроме того, нами было разработано дополнение оригинального алгоритма, позволяющее производить генерацию морфологии в две фазы, имитируя двухстадийное развитие структуры астроцитов на первой и третьей-четвертой неделях постнатального развития мозга крыс. Для достижения этого результата мы прибегаем к введению двух типов аттракторов, чтобы разделить две различные стратегии роста во времени: быстрое исследование пространства слабоветвящимися отростками и созревание сложной морфологии за счет обильного ветвления. Мы предполагаем, что модификация алгоритма с введением динамической генерации аттракторов может объяснить процесс формирования тонких структур астроцитарной клетки.
Modelling of astrocyte morphology with space colonization algorithm
Computer Research and Modeling, 2025, v. 17, no. 3, pp. 465-481We examine a phenomenological algorithm for generating morphology of astrocytes, a major class of glial brain cells, based on morphometric data of rat brain protoplasmic astrocytes and observations of general cell development trends in vivo, based on current literature. We adapted the Space Colonization Algorithm (SCA) for procedural generation of astrocytic morphology from scratch. Attractor points used in generation were spatially distributed in the model volume according to the synapse distribution density in the rat hippocampus tissue during the first week of postnatal brain development. We analyzed and compared astrocytic morphology reconstructions at different brain development stages using morphometry estimation techniques such as Sholl analysis, number of bifurcations, number of terminals, total tree length, and maximum branching order. Using morphometric data from protoplasmic astrocytes of rats at different ages, we selected the necessary generation parameters to obtain the most realistic three-dimensional cell morphology models. We demonstrate that our proposed algorithm allows not only to obtain individual cell geometry but also recreate the phenomenon of tiling domain organization in the cell populations. In our algorithm tiling emerges due to the cell competition for territory and the assignment of unique attractor points to their processes, which then become unavailable to other cells and their processes. We further extend the original algorithm by splitting morphology generation in two phases, thereby simulating astrocyte tree structure development during the first and third-fourth weeks of rat postnatal brain development: rapid space exploration at the first stage and extensive branching at the second stage. To this end, we introduce two attractor types to separate two different growth strategies in time. We hypothesize that the extended algorithm with dynamic attractor generation can explain the formation process of fine astrocyte cell structures and maturation of astrocytic arborizations.
-
Численное моделирование процессов зарядки при диагностике сегнетоэлектриков методами растровой электронной микроскопии
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 107-118Предложен алгоритм решения прикладной задачи расчета электрических характеристик полевых эффектов инжектированных зарядов в сегнетоэлектриках при электронном облучении, основанный на реализации детерминированной модели методом конечных элементов с учетом результатов моделирования транспорта электронов методом Монте-Карло. Разработано программное приложение для проведения вычислительного эксперимента.
Ключевые слова: математическая модель, алгоритм, сегнетоэлектрик, электронное облучение, процесс зарядки, метод конечных элементов, метод Монте-Карло.
Numerical simulation of charging processes at ferroelectric diagnostics with scanning electron microscopy techniques
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 107-118Citations: 2 (RSCI).An algorithm of applied problem solving was described to calculate electrical characteristics of electrical field effects in ferroelectrics electron-beam charged. The algorithm was based on implementation of the deterministic model using finite element method as well as taking into account Monte-Carlo simulation results of electron transport. The program application was developed to perform computing experiments.
-
Моделирование влияния подвижности особей на пространственно-временную динамику популяции на основе компьютерной модели
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 297-305В статье предложена компьютерная модель, описывающая пространственно-временную динамику популяции, взаимодействующей с возобновимым ресурсом. Подробно описан жизненный цикл особи. Предложен алгоритм пространственного перемещения особей по ареалу, учитывающий пищевую и социальную активность. Описаны вычислительные эксперименты с моделью, которые имитируют движения стада животных по ареалу, а также описан модельный эксперимент, когда групповой тип поведения животных вследствие изменения характеристик окружающей среды становится индивидуальным, после чего из-за изменения в параметрах окружающей среды и поведении животных формируется стадо, которое в дальнейшем переходит снова к групповому типу поведения.
Modeling the impact of mobility of individuals on space-time dynamics of a population by means of a computer model
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 297-305Views (last year): 2. Citations: 3 (RSCI).A computer model describing the spatial-temporal dynamics of populations of interacting with renewable resource is proposed. The life cycle of the individual is described. The algorithm for spatial mobility of individuals within an area is proposed, which takes into account nutritional and social activity. The paper presents the computational experiments with the model that mimic the movement of herds of animals in the area, and describes the model experiment when the group type of animal behavior due to changes in the characteristics of the environment and animal behavior the herd animals is formed, which later goes again in the group type of animal behavior.
-
Стохастическое моделирование химических реакций в субдиффузионной среде
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.
Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.
Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.
Stochastic simulation of chemical reactions in subdiffusion medium
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 87-104Theory of anomalous diffusion, which describe a vast number of transport processes with power law mean squared displacement, is actively advancing in recent years. Diffusion of liquids in porous media, carrier transport in amorphous semiconductors and molecular transport in viscous environments are widely known examples of anomalous deceleration of transport processes compared to the standard model.
Direct Monte Carlo simulation is a convenient tool for studying such processes. An efficient stochastic simulation algorithm is developed in the present paper. It is based on simple renewal process with interarrival times that have power law asymptotics. Analytical derivations show a deep connection between this class of random process and equations with fractional derivatives. The algorithm is further generalized by coupling it with chemical reaction simulation. It makes stochastic approach especially useful, because the exact form of integrodifferential evolution equations for reaction — subdiffusion systems is still a matter of debates.
Proposed algorithm relies on non-markovian random processes, hence one should carefully account for qualitatively new effects. The main question is how molecules leave the system during chemical reactions. An exact scheme which tracks all possible molecule combinations for every reaction channel is computationally infeasible because of the huge number of such combinations. It necessitates application of some simple heuristic procedures. Choosing one of these heuristics greatly affects obtained results, as illustrated by a series of numerical experiments.
-
Особенности применения физически информированных нейронных сетей для решения обыкновенных дифференциальных уравнений
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1621-1636Рассматривается применение физически информированных нейронных сетей с использованием многослойных персептронов для решения задач Коши, в которых правые части уравнения являются непрерывными монотонно возрастающими, убывающими или осциллирующими функциями. С помощью вычислительных экспериментов изучено влияние метода построения приближенного нейросетевого решения, структуры нейронной сети, алгоритмов оптимизации и средств программной реализации на процесс обучения и точность полученного решения. Выполнен анализ эффективности работы наиболее часто используемых библиотек машинного обучения при разработке программ на языках программирования Python и C#. Показано, что применение языка C# позволяет сократить время обучения нейросетей на 20–40%. Выбор различных функций активации влияет на процесс обучения и точность приближенного решения. Наиболее эффективными в рассматриваемых задачах являются сигмоида и гиперболический тангенс. Минимум функции потерь достигается при определенном количестве нейронов скрытого слоя однослойной нейронной сети за фиксированное время обучения нейросетевой модели, причем усложнение структуры сети за счет увеличения числа нейронов не приводит к улучшению результатов обучения. При этом величина шага сетки между точками обучающей выборки, обеспечивающей минимум функции потерь, в рассмотренных задачах Коши практически одинакова. Кроме того, при обучении однослойных нейронных сетей наиболее эффективными для решения задач оптимизации являются метод Adam и его модификации. Дополнительно рассмотрено применение двух- и трех-слойных нейронных сетей. Показано, что в этих случаях целесообразно использовать алгоритм LBFGS, который по сравнению с методом Adam в ряде случаев требует на порядок меньшего времени обучения при достижении одинакового порядка точности. Исследованы также особенности обучения нейронной сети в задачах Коши, в которых решение является осциллирующей функцией с монотонно убывающей амплитудой. Для них необходимо строить нейросетевое решение не с постоянными, а с переменными весовыми коэффициентами, что обеспечивает преимущество такого подхода при обучении в тех узлах, которые расположены вблизи конечной точки интервала решения задачи.
Ключевые слова: обыкновенные дифференциальные уравнения, машинное обучение, физически информированные нейронные сети, численные методы.
Analysis of the physics-informed neural network approach to solving ordinary differential equations
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1621-1636Considered the application of physics-informed neural networks using multi layer perceptrons to solve Cauchy initial value problems in which the right-hand sides of the equation are continuous monotonically increasing, decreasing or oscillating functions. With the use of the computational experiments the influence of the construction of the approximate neural network solution, neural network structure, optimization algorithm and software implementation means on the learning process and the accuracy of the obtained solution is studied. The analysis of the efficiency of the most frequently used machine learning frameworks in software development with the programming languages Python and C# is carried out. It is shown that the use of C# language allows to reduce the time of neural networks training by 20–40%. The choice of different activation functions affects the learning process and the accuracy of the approximate solution. The most effective functions in the considered problems are sigmoid and hyperbolic tangent. The minimum of the loss function is achieved at the certain number of neurons of the hidden layer of a single-layer neural network for a fixed training time of the neural network model. It’s also mentioned that the complication of the network structure increasing the number of neurons does not improve the training results. At the same time, the size of the grid step between the points of the training sample, providing a minimum of the loss function, is almost the same for the considered Cauchy problems. Training single-layer neural networks, the Adam method and its modifications are the most effective to solve the optimization problems. Additionally, the application of twoand three-layer neural networks is considered. It is shown that in these cases it is reasonable to use the LBFGS algorithm, which, in comparison with the Adam method, in some cases requires much shorter training time achieving the same solution accuracy. The specificity of neural network training for Cauchy problems in which the solution is an oscillating function with monotonically decreasing amplitude is also investigated. For these problems, it is necessary to construct a neural network solution with variable weight coefficient rather than with constant one, which improves the solution in the grid cells located near by the end point of the solution interval.
-
Сверхмасштабируемое моделирование магнитных состояний и реконструкция типов упорядочения массивов наночастиц
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 309-318Рассматриваются два возможных вычислительных метода интерпретации экспериментальных данных, полученных методами магнитно-силовой зондовой микроскопии. Развитие методов моделирования и реконструирования распределения макроспинов проводится с целью изучения процессов перемагничивания наночастиц в упорядоченных двумерных массивах. Предлагаются подходы к разработке сверхмасштабируемых высокопроизводительных алгоритмов, предназначенных для параллельного исполнения на суперкомпьютерных кластерах для решения прямой и обратной задачи моделирования магнитных состояний, типов упорядочения и процессов перемагничивания наносистем с коллективным поведением. Результаты моделирования согласуются с результатами эксперимента.
Ключевые слова: магнито-силовая микроскопия, магнитные состояния, высокопроизводительные параллельные вычисления, сверхмасштабируемость.
Superscale simulation of the magnetic states and reconstruction of the ordering types for nanodots arrays
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 309-318Views (last year): 2.We consider two possible computational methods of the interpretation of experimental data obtained by means of the magnetic force microscopy. These methods of macrospin distribution simulation and reconstruction can be used for research of magnetization reversal processes of nanodots in ordered 2D arrays of nanodots. New approaches to the development of high-performance superscale algorithms for parallel executing on a supercomputer clusters for solving direct and inverse task of the modeling of magnetic states, types of ordering, reversal processes of nanosystems with a collective behavior are proposed. The simulation results are consistent with experimental results.
-
Применение алгоритма Random Forest для построения локального оператора, уточняющего результаты расчетов в задачах внешней аэродинамики
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 761-778При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.
В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.
Ключевые слова: пристенная декомпозиция, пристенные функции, вычислительная аэродинамика, случайный лес, машинное обучение, турбулентность.
Application of Random Forest to construct a local operator for flow fields refinement in external aerodynamics problems
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 761-778Numerical modeling of turbulent flows requires finding the balance between accuracy and computational efficiency. For example, DNS and LES models allow to obtain more accurate results, comparing to RANS models, but are more computationally expensive. Because of this, modern applied simulations are mostly performed with RANS models. But even RANS models can be computationally expensive for complex geometries or series simulations due to the necessity of resolving the boundary layer. Some methods, such as wall functions and near-wall domain decomposition, allow to significantly improve the speed of RANS simulations. However, they inevitably lose precision due to using a simplified model in the near-wall domain. To obtain a model that is both accurate and computationally efficient, it is possible to construct a surrogate model based on previously made simulations using the precise model.
In this paper, an operator is constructed that allows reconstruction of the flow field obtained by an accurate model based on the flow field obtained by the simplified model. Spalart–Allmaras model with approximate nearwall domain decomposition and Spalart–Allmaras model resolving the near-wall region are taken as the simplified and the base models respectively. The operator is constructed using a local approach, i. e. to reconstruct a point in the flow field, only features (flow variables and their derivatives) at this point in the field are used. The operator is constructed using the Random Forest algorithm. The efficiency and accuracy of the obtained surrogate model are demonstrated on the supersonic flow over a compression corner with different values for angle $\alpha$ and Reynolds number. The investigation has been conducted into interpolation and extrapolation both by $Re$ and $\alpha$.
-
Модель формирования карты радиосреды для когнитивной системы связи на базе сотовой сети LTE
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 127-146Статья посвящена вторичному использованию спектра в телекоммуникационных сетях. Акцентируется внимание, что одним из решений данной проблемы является применение технологий когнитивного радио и динамического доступа к спектру, для успешного функционирования которых необходим большой объем информации, включающий параметры базовых станций и абонентов сети. Хранение и обработка информации должны осуществляться при помощи карты радиосреды, которая представляет собой пространственно-временную базу данных всех активностей в сети и позволяет определять доступные для использования в заданное время частоты. В работе представлена двухуровневая модель для формирования карты радиосреды системы сотовой связи LTE, в которой выделены локальный и глобальный уровни, описываемая следующими параметрами: набор частот, ослабление сигнала, карта распространения сигналов, шаг сетки, текущий временной отсчет. Ключевыми объектами модели являются базовая станция и абонентское устройство. К основным параметрам базовой станции отнесены: наименование, идентификатор, координаты ячейки, номер, диапазон, мощность излучения, номера подключенных абонентских устройств, выделенные им ресурсные блоки. Для абонентских устройств в качестве параметров используются: наименование, идентификатор, местоположение, текущие координаты ячейки устройства, идентификатор рабочей базовой станции, частотный диапазон, номера ресурсных блоков для связи со станцией, мощность излучения, статус передачи данных, список номеров ближайших станций, расписания перемещения и сеансов связи устройств. Представлен алгоритм для реализации модели с учетом сценариев перемещения и сеансов связи абонентских устройств. Приводится методика расчета карты радиосреды в точке координатной сетки с учетом потерь при распространении радиосигналов от излучающих устройств. Программная реализация модели выполнена с использованием пакета MatLab. Описаны подходы, позволяющие повысить быстродействие ее работы. При моделировании выбор параметров осуществлялся с учетом данных действующих систем связи и экономии вычислительных ресурсов. Продемонстрированы результаты исследований программной реализации алгоритма формирования карты радиосреды, подтверждающие корректность разработанной модели.
Model for building of the radio environment map for cognitive communication system based on LTE
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 127-146The paper is devoted to the secondary use of spectrum in telecommunication networks. It is emphasized that one of the solutions to this problem is the use of cognitive radio technologies and dynamic spectrum access for the successful functioning of which a large amount of information is required, including the parameters of base stations and network subscribers. Storage and processing of information should be carried out using a radio environment map, which is a spatio-temporal database of all activity in the network and allows you to determine the frequencies available for use at a given time. The paper presents a two-level model for forming a map of the radio environment of a cellular communication system LTE, in which the local and global levels are highlighted, which is described by the following parameters: a set of frequencies, signal attenuation, signal propagation map, grid step, current time count. The key objects of the model are the base station and the subscriber unit. The main parameters of the base station include: name, identifier, cell coordinates, range number, radiation power, numbers of connected subscriber devices, dedicated resource blocks. For subscriber devices, the following parameters are used: name, identifier, location, current coordinates of the device cell, base station identifier, frequency range, numbers of resource blocks for communication with the station, radiation power, data transmission status, list of numbers of the nearest stations, schedules movement and communication sessions of devices. An algorithm for the implementation of the model is presented, taking into account the scenarios of movement and communication sessions of subscriber devices. A method for calculating a map of the radio environment at a point on a coordinate grid, taking into account losses during the propagation of radio signals from emitting devices, is presented. The software implementation of the model is performed using the MatLab package. The approaches are described that allow to increase the speed of its work. In the simulation, the choice of parameters was carried out taking into account the data of the existing communication systems and the economy of computing resources. The experimental results of the algorithm for the formation of a radio environment map are demonstrated, confirming the correctness of the developed model.
-
Численное исследование механизмов распространения пульсирующей газовой детонации в неоднородной среде
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1263-1282В последние несколько лет наблюдаются значительные успехи в области создания двигательных установок для летательных аппаратов, основанных на сжигании топлива во вращающейся детонационной волне. В научных лабораторияхпо всему миру проводятся как фундаментальные исследования, связанные, например, с вопросами смесеобразования при раздельной подаче топлива и окислителя, так и прикладные по доводке уже существующих прототипов. В работе приводится краткий обзор основных результатов наиболее значимых недавних расчетных работ по изучению распространения одномерной пульсирующей волны газовой детонации в среде с неравномерным распределением параметров. Отмечаются общие тенденции, которые наблюдали авторы данных работ. В этих работах показано, что наличие возмущений параметров перед фронтом волны может приводить к регуляризации и к резонансному усилению пульсаций параметров за ее фронтом. В результате возникает привлекательная с практической точки зрения возможность влиять на устойчивость детонационной волны и управлять ею. Настоящая работа направлена на создание инструмента, который позволяет изучать газодинамические механизмы данных эффектов.
Математическая модель основана на одномерных уравнениях Эйлера, дополненных одностадийной моделью кинетики химических реакций. Определяющая система уравнений записана в системе координат, связанной с лидирующим скачком, что приводит к необходимости добавить уравнение для скорости лидирующей волны. Предложен способ интегрирования данного уравнения, учитывающий изменение плотности среды перед фронтом волны. Таким образом, предложен вычислительный алгоритм для моделирования распространения детонации в неоднородной среде.
С использованием разработанного алгоритма проведено численное исследование распространения устойчивой детонации в среде с переменной плотностью. Исследован режим с относительно небольшой амплитудой колебаний плотности, при котором колебания параметров за фронтом детонационной волны происходят с частотой колебаний плотности среды. Показана связь периода колебаний параметров со временем прохождения характеристик C+ и C0 по области, которую условно можно считать зоной индукции. Сдвиг по фазе между колебаниями скорости детонационной волны и плотности газа перед волной оценен как максимальное время прохождения характеристики C+ по зоне индукции.
Ключевые слова: математическое моделирование, детонационная волна, уравнения Эйлера, одностадийная химическая кинетика, пульсации, неоднородная среда.
Numerical study of the mechanisms of propagation of pulsating gaseous detonation in a non-uniform medium
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1263-1282In the last few years, significant progress has been observed in the field of rotating detonation engines for aircrafts. Scientific laboratories around the world conduct both fundamental researches related, for example, to the issues of effective mixing of fuel and oxidizer with the separate supply, and applied development of existing prototypes. The paper provides a brief overview of the main results of the most significant recent computational work on the study of propagation of a onedimensional pulsating gaseous detonation wave in a non-uniform medium. The general trends observed by the authors of these works are noted. In these works, it is shown that the presence of parameter perturbations in front of the wave front can lead to regularization and to resonant amplification of pulsations behind the detonation wave front. Thus, there is an appealing opportunity from a practical point of view to influence the stability of the detonation wave and control it. The aim of the present work is to create an instrument to study the gas-dynamic mechanisms of these effects.
The mathematical model is based on one-dimensional Euler equations supplemented by a one-stage model of the kinetics of chemical reactions. The defining system of equations is written in the shock-attached frame that leads to the need to add a shock-change equations. A method for integrating this equation is proposed, taking into account the change in the density of the medium in front of the wave front. So, the numerical algorithm for the simulation of detonation wave propagation in a non-uniform medium is proposed.
Using the developed algorithm, a numerical study of the propagation of stable detonation in a medium with variable density as carried out. A mode with a relatively small oscillation amplitude is investigated, in which the fluctuations of the parameters behind the detonation wave front occur with the frequency of fluctuations in the density of the medium. It is shown the relationship of the oscillation period with the passage time of the characteristics C+ and C0 over the region, which can be conditionally considered an induction zone. The phase shift between the oscillations of the velocity of the detonation wave and the density of the gas before the wave is estimated as the maximum time of passage of the characteristic C+ through the induction zone.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




