Результаты поиска по 'популяция':
Найдено статей: 71
  1. Алпеева Л.Е., Цибулин В.Г.
    Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671

    Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.

    Alpeeva L.E., Tsybulin V.G.
    The cosymmetric approach to the analysis of spatial structure of populations with amount of taxis
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 661-671

    We consider a mathematical model describing the competition for a heterogeneous resource of two populations on a one-dimensional area. Distribution of populations is governed by diffusion and directed migration, species growth obeys to the logistic law. We study the corresponding problem of nonlinear parabolic equations with variable coefficients (function of a resource, parameters of growth, diffusion and migration). Approach on the theory the cosymmetric dynamic systems of V. Yudovich is applied to the analysis of population patterns. Conditions on parameters for which the problem under investigation has nontrivial cosymmetry are analytically derived. Numerical experiment is used to find an emergence of continuous family of steady states when cosymmetry takes place. The numerical scheme is based on the finite-difference discretization in space using the balance method and integration on time by Runge-Kutta method. Impact of diffusive and migration parameters on scenarios of distribution of populations is studied. In the vicinity of the line, corresponding to cosymmetry, neutral curves for diffusive parameters are calculated. We present the mappings with areas of diffusive parameters which correspond to scenarios of coexistence and extinction of species. For a number of migration parameters and resource functions with one and two maxima the analysis of possible scenarios is carried out. Particularly, we found the areas of parameters for which the survival of each specie is determined by initial conditions. It should be noted that dynamics may be nontrivial: after starting decrease in densities of both species the growth of only one population takes place whenever another specie decreases. The analysis has shown that areas of the diffusive parameters corresponding to various scenarios of population patterns are grouped near the cosymmetry lines. The derived mappings allow to explain, in particular, effect of a survival of population due to increasing of diffusive mobility in case of starvation.

    Views (last year): 2. Citations: 1 (RSCI).
  2. Абакумов А.И., Израильский Ю.Г.
    Стабилизирующая роль структуры рыбной популяции в условиях промысла при случайных воздействиях среды обитания
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 609-620

    Исследуется влияние промысла на структурированную рыбную популяцию в случайным образом меняющихся условиях среды обитания. Параметры популяции соответствуют массовым видам пелагических рыб дальневосточных морей северо-западной части Тихого океана (минтай, сельдь, сардина). В различных частях Мирового океана обитают похожие виды рыб. В качестве основного признака принимается различие особей по размеру. Это легко измеряемая в промысловых условиях характеристика, она достаточно хорошо определяет основные свойства особей: возраст, половозрелость, другие морфологические и физиологические особенности. Флуктуации внешней среды оказывают существенное влияние на особей в ранних стадиях развития, во взрослом состоянии наблюдающиеся изменения во внешней среде слабо влияют на жизнедеятельность особей. Характеристики промысла выбираются оптимальными с точки зрения дохода от него. Основной управляющей характеристикой промысла являются промысловые усилия. Зависимость дохода от количества промысловых усилий выбрана квадратичной в части затрат от промысла, что соответствует экономическим представлениям о росте затрат при увеличении объемов производства. Модельное исследование показывает, что структура популяции обеспечивает повышенную стабильность популяции. В процессе роста особей и их выбывания из-за естественной смертности сглаживаются колебания плотности численности, возникающие из-за сильного влияния на особей флуктуаций среды обитания на ранних стадиях развития. Сглаживающую роль играет диффузионная составляющая процессов роста. В свою очередь, промысел обладает сглаживающим воздействием по отношению к изменениям (в том числе и стохастическим) среды обитания, существенно влияющим на обилие молоди и последующую динамику обилия популяции рыб. В сравнении с оптимальным переменным по интенсивности промыслом исследован постоянный по интенсивности режим промысла. При этом оказалось, что в динамичных условиях среды и стохастической динамике численности пополнения существует постоянное по времени промысловое усилие, по эффективности близкое к оптимальному переменному промыслу. Это означает, что постоянный или слабо меняющийся по количеству промысловых усилий промысел может оказаться весьма эффективным с точки зрения дохода.

    Abakumov A.I., Izrailsky Y.G.
    The stabilizing role of fish population structure under the influence of fishery and random environment variations
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 609-620

    We study the influence of fishery on a structured fish population under random changes of habitat conditions. The population parameters correspond to dominant pelagic fish species of Far-Eastern seas of the northwestern part of the Pacific Ocean (pollack, herring, sardine). Similar species inhabit various parts of the Word Ocean. The species body size distribution was chosen as a main population feature. This characteristic is easy to measure and adequately defines main specimen qualities such as age, maturity and other morphological and physiological peculiarities. Environmental fluctuations have a great influence on the individuals in early stages of development and have little influence on the vital activity of mature individuals. The fishery revenue was chosen as an optimality criterion. The main control characteristic is fishing effort. We have chosen quadratic dependence of fishing revenue on the fishing effort according to accepted economic ideas stating that the expenses grow with the production volume. The model study shows that the population structure ensures the increased population stability. The growth and drop out of the individuals’ due to natural mortality smoothens the oscillations of population density arising from the strong influence of the fluctuations of environment on young individuals. The smoothing part is played by diffusion component of the growth processes. The fishery in its turn smooths the fluctuations (including random fluctuations) of the environment and has a substantial impact upon the abundance of fry and the subsequent population dynamics. The optimal time-dependent fishing effort strategy was compared to stationary fishing effort strategy. It is shown that in the case of quickly changing habitat conditions and stochastic dynamics of population replenishment there exists a stationary fishing effort having approximately the same efficiency as an optimal time-dependent fishing effort. This means that a constant or weakly varying fishing effort can be very efficient strategy in terms of revenue.

    Views (last year): 6. Citations: 2 (RSCI).
  3. Ха Д.Т., Цибулин В.Г.
    Уравнения диффузии–реакции–адвекции для системы «хищник–жертва» в гетерогенной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1161-1176

    Анализируются варианты учета неоднородности среды при компьютерном моделировании динамики хищника и жертвы на основе системы уравнений реакции–диффузии–адвекции. Локальное взаимодействие видов (члены реакции) описывается логистическим законом роста для жертвы и соотношениями Беддингтона – ДеАнгелиса, частными случаями которых являются функциональный отклик Холлинга второго рода и модель Ардити – Гинзбурга. Рассматривается одномерная по пространству задача для неоднородного ресурса (емкости среды) и трех видов таксиса (жертвы на ресурс и от хищника, хищника к жертве). Используется аналитический подход для исследования устойчивости стационарных решений в случае локального взаимодействия (бездиффузионный подход) и вычисления на основе метода прямых для учета диффузионных и адвективных процессов. Сравнение критических значений параметра смертности хищников показало, что при постоянных коэффициентах в соотношениях Беддингтона – ДеАнгелиса получаются переменные по пространственной координате критические величины, а для модели Ардити – Гинзбурга данный эффект не наблюдается. Предложена модификация членов реакции, позволяющая учесть неоднородность ресурса. Представлены численные результаты по динамике видов для больших и малых миграционных коэффициентов, демонстрирующие снижение влияния вида локальных членов на формирующиеся пространственно-временные распределения популяций. Проанализированы бифуркационные переходы при изменении параметров диффузии–адвекции и членов реакции.

    Ha D.T., Tsybulin V.G.
    Diffusion–reaction–advection equations for the predator–prey system in a heterogeneous environment
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1161-1176

    We analyze variants of considering the inhomogeneity of the environment in computer modeling of the dynamics of a predator and prey based on a system of reaction-diffusion–advection equations. The local interaction of species (reaction terms) is described by the logistic law for the prey and the Beddington –DeAngelis functional response, special cases of which are the Holling type II functional response and the Arditi – Ginzburg model. We consider a one-dimensional problem in space for a heterogeneous resource (carrying capacity) and three types of taxis (the prey to resource and from the predator, the predator to the prey). An analytical approach is used to study the stability of stationary solutions in the case of local interaction (diffusionless approach). We employ the method of lines to study diffusion and advective processes. A comparison of the critical values of the mortality parameter of predators is given. Analysis showed that at constant coefficients in the Beddington –DeAngelis model, critical values are variable along the spatial coordinate, while we do not observe this effect for the Arditi –Ginzburg model. We propose a modification of the reaction terms, which makes it possible to take into account the heterogeneity of the resource. Numerical results on the dynamics of species for large and small migration coefficients are presented, demonstrating a decrease in the influence of the species of local members on the emerging spatio-temporal distributions of populations. Bifurcation transitions are analyzed when changing the parameters of diffusion–advection and reaction terms.

  4. Апонин Ю.М., Апонина Е.А.
    Принцип инвариантности Ла-Салля и математические модели эволюции микробных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 177-190

    Построена математическая модель эволюции микробных популяций при длительном непрерывном культивировании на протоке. Модель представляет собой обобщение целого ряда известных математических моделей эволюции, в которых учитываются такие факторы генетической изменчивости как хромосомные мутации, мутации плазмидных генов, перенос плазмид между клетками микроорганизмов, потери плазмид при делении клеток и др. Для общей модели эволюции построена функция Ляпунова и на основании теоремы Ла-Салля доказано существование в пространстве состояний математической модели ограниченного, положительно инвариантного и глобально притягивающего множества. Дано аналитическое описание этого множества. Обсуждаются перспективы применения численных методов для оценки числа, местоположения и последующего исследования предельных множеств в математических моделях эволюции на протоке.

    Aponin Yu.M., Aponina E.A.
    The invariance principle of La-Salle and mathematical models for the evolution of microbial populations
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 177-190

    A mathematical model for the evolution of microbial populations during prolonged cultivation in a chemostat has been constructed. This model generalizes the sequence of the well-known mathematical models of the evolution, in which such factors of the genetic variability were taken into account as chromosomal mutations, mutations in plasmid genes, the horizontal gene transfer, the plasmid loss due to cellular division and others. Liapunov’s function for the generic model of evolution is constructed. The existence proof of bounded, positive invariant and globally attracting set in the state space of the generic mathematical model for the evolution is presented because of the application of La-Salle’s theorem. The analytic description of this set is given. Numerical methods for estimate of the number of limit sets, its location and following investigation in the mathematical models for evolution are discussed.

    Views (last year): 8. Citations: 3 (RSCI).
  5. Ветчанин Е.В., Тененев В.А., Килин А.А.
    Оптимальное управление движением в идеальной жидкости тела c винтовой симметрией с внутренними роторами
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 741-759

    В данной работе рассматривается управляемое движение в идеальной жидкости винтового тела с тремя лопастями за счет вращения трех внутренних роторов. Ставится задача выбора управляющих воздействий, обеспечивающих движение тела вблизи заданной траектории. Для определения управлений, гарантирующих движение вблизи заданной кривой, предложены методы, основанные на применении гибридных генетических алгоритмов (генетические алгоритмы с вещественным кодированием с дополнительным обучением лидера популяции каким-либо градиентным методом) и искусственных нейронных сетей. Корректность работы предложенных численных методов оценивается с помощью полученных ранее дифференциальных уравнений, определяющих закон изменения управляющих воздействий для заданной траектории.

    В подходе на основе гибридных генетических алгоритмов исходная задача минимизации интегрального функционала сводится к минимизации функции многих переменных. Заданный временной интервал разбивается на малые элементы, на каждом из которых управляющие воздействия аппроксимируются полиномами Лагранжа 2 и 3 порядков. Гибридные генетические алгоритмы при соответствующих настройках воспроизводят решение, близкое точному. Однако стоимость расчета 1 секунды физического процесса составляет порядка 300 секунд процессорного времени.

    Для повышения быстродействия расчета управляющих воздействий предложен алгоритм на основе искусственных нейронных сетей. В качестве входного сигнала нейронная сеть принимает компоненты требуемого вектора перемещения. В качестве выходного сигнала возвращаются узловые значения полиномов Лагранжа, приближенно описывающих управляющие воздействия. Нейронная сеть обучается хорошо известным методом обратного распространения ошибки. Обучающая выборка генерируется с помощью подхода на основе гибридных генетических алгоритмов. Расчет 1 секунды физического процесса с помощью нейронной сети требует примерно 0.004 секунды процессорного времени. То есть на 6 порядков быстрее по сравнению в гибридным генетическим алгоритмом. Управление, рассчитанное с помощью искусственной нейронной сети, отличается от точного. Однако, несмотря на данное отличие, обеспечивает достаточно точное следование по заданной траектории.

    Vetchanin E.V., Tenenev V.A., Kilin A.A.
    Optimal control of the motion in an ideal fluid of a screw-shaped body with internal rotors
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 741-759

    In this paper we consider the controlled motion of a helical body with three blades in an ideal fluid, which is executed by rotating three internal rotors. We set the problem of selecting control actions, which ensure the motion of the body near the predetermined trajectory. To determine controls that guarantee motion near the given curve, we propose methods based on the application of hybrid genetic algorithms (genetic algorithms with real encoding and with additional learning of the leader of the population by a gradient method) and artificial neural networks. The correctness of the operation of the proposed numerical methods is estimated using previously obtained differential equations, which define the law of changing the control actions for the predetermined trajectory.

    In the approach based on hybrid genetic algorithms, the initial problem of minimizing the integral functional reduces to minimizing the function of many variables. The given time interval is broken up into small elements, on each of which the control actions are approximated by Lagrangian polynomials of order 2 and 3. When appropriately adjusted, the hybrid genetic algorithms reproduce a solution close to exact. However, the cost of calculation of 1 second of the physical process is about 300 seconds of processor time.

    To increase the speed of calculation of control actions, we propose an algorithm based on artificial neural networks. As the input signal the neural network takes the components of the required displacement vector. The node values of the Lagrangian polynomials which approximately describe the control actions return as output signals . The neural network is taught by the well-known back-propagation method. The learning sample is generated using the approach based on hybrid genetic algorithms. The calculation of 1 second of the physical process by means of the neural network requires about 0.004 seconds of processor time, that is, 6 orders faster than the hybrid genetic algorithm. The control calculated by means of the artificial neural network differs from exact control. However, in spite of this difference, it ensures that the predetermined trajectory is followed exactly.

    Views (last year): 12. Citations: 1 (RSCI).
  6. Ильичев В.Г., Дашкевич Л.В.
    Оптимальный промысел и эволюция путей миграции рыбных популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 879-893

    Представлена новая дискретная эколого-эволюционная математическая модель, в которой реализованы механизмы поиска эволюционно устойчивых маршрутов миграции рыбных популяций. Предложенные адаптивные конструкции имеют малую размерность и поэтому обладают высоким быстродействием, что позволяет проводить компьютерные расчеты на длительный срок за приемлемое машинное время. При исследовании устойчивости использованы как геометрические подходы нелинейного анализа, так и компьютерные асимптотические методы. Динамика миграции рыбной популяции описывается некоторой марковской матрицей, которая может изменяться в процессе эволюции. В семействе марковских матриц (фиксированной размерности) выделены базисные матрицы, которые использованы для генерации маршрутов миграции мутантов. В результате конкуренции исходной популяции с мутантами выявляется перспективное направление эволюции пространственного поведения рыбы при заданном промысле и кормовой базе. Данная модель была применена к решению проблемы оптимального вылова на долгосрочную перспективу, при условии, что водоем разделен на две части, у каждой из которых свой собственник. При решении оптимизационных задач используется динамическое программирование, основанное на построении функции Беллмана. Обнаружена парадоксальная стратегия заманивания, когда один из участников промысла на своей акватории временно сокращает вылов. В этом случае мигрирующая рыба больше времени проводит в этом районе (при условии равной кормовой базы). Такой маршрут эволюционно закрепляется и не изменяется даже после возобновления промысла в этом районе. Второй участник промысла может восстановить статус-кво, применив заманивание на своей части акватории. Возникает бесконечная последовательность заманиваний — своеобразная игра в поддавки. Введено новое эффективное понятие — внутренняя цена рыбной популяции, зависящая от района водоема. По сути, эти цены представляют собой частные производные функции Беллмана и могут быть использованы в качестве налога на выловленную рыбу. В этом случае проблема многолетнего промысла сводится к решению задачи одногодичной оптимизации.

    Il’ichev V.G., Dashkevich L.V.
    Optimal fishing and evolution of fish migration routes
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893

    A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.

  7. Бистабильность обнаруживается во множестве прикладных и теоретических исследований биологических систем (популяций, сообществ). В простейшем случае бистабильность проявляется в сосуществовании двух альтернативных устойчивых состояний равновесия системы, выбор между которыми зависит от начальных условий. Наличие бистабильности в простых моделях может привести к появлению квадростабильности при усложнении моделей, например при учете генетической, возрастной и пространственной структуры. Это обнаруживается в разных моделях и весьма разных содержательных задачах и, как правило, приводит к весьма интересным, часто контринтуитивным выводам. Обзору таких ситуаций посвящена данная работа. В ней рассмотрены бифуркации, приводящие к би- и квадростабильности в математических моделях следующих биологических объектов: система двух миграционно связанных популяций, находящихся под действием естественного отбора, все генетическое разнообразие которых представлено единственным диаллельным локусом с существенной разницей в приспособленностях для гомо- и гетерозигот; система двух миграционно связанных лимитированных популяций, описываемых моделью Базыкина или моделью Рикера; популяция с двумя стадиями развития и плотностно-зависимой регуляцией рождаемости, которая либо определяется только плотностью, либо дополнительно зависит от генетической структуры смежных поколений. Обнаружено, что все перечисленные модели имеют схожие сценарии рождения состояний равновесий, которые соответствуют формированию пространственно-временной неоднородности либо дифференциации особей разных поколений по признакам (первичной генетической дивергенции). Показано, что такая неоднородность является следствием локальной бистабильности и появляется в результате комбинации бифуркации вил (удвоения периода) и седло-узловой бифуркации.

    Frisman E.Y., Kulakov M.P.
    From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109

    Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.

  8. Крючечникова А.Н., Левдик Т.Г., Браже А.Р.
    Моделирование морфологии астроцитов с применением алгоритма колонизации пространства
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 465-481

    В настоящей работе рассматривается феноменологический алгоритм генерации морфологии глиальных клеток мозга — астроцитов, основанный на морфометрических данных протоплазматических астроцитов и общих тенденциях развития данного типа клеток in vivo, описанных в литературе. Мы адаптировали алгоритм пространственной колонизации (Space Colonization Algorithm, SCA) для процедурной генерации полной астроцитарной морфологии. Используемые в генерации аттракторные точки распределялись в пространственном объеме в соответствии с плотностью распределения синапсов в ткани гиппокампа на первой неделе постнатального развития мозга крысы. Нами были проанализированы и сопоставлены данные реконструкций астроцитарных морфологий на разных этапах развития мозга с использованием таких методик и параметров, как анализ Шолля, число точек ветвления, число терминалей, общая длина дерева и максимальный порядок ветвления. Используя данные морфометрического анализа протоплазматических астроцитов животных разных возрастов, были подобраны необходимые параметры генерации для получения наиболее реалистичных трехмерных моделей морфологии клеток. Мы показали, что разработанный нами алгоритм позволяет не только получить геометрию отдельных клеток, например, для задач вычислительной биологии, но и воссоздать феномен доменной организации клеточной популяции. Доменная организация в ходе генерации морфологий возникает из-за конкуренции клеток за территорию и присвоения их отростками уникальных аттракторных точек, которые становятся недоступными для других клеток и их отростков. Кроме того, нами было разработано дополнение оригинального алгоритма, позволяющее производить генерацию морфологии в две фазы, имитируя двухстадийное развитие структуры астроцитов на первой и третьей-четвертой неделях постнатального развития мозга крыс. Для достижения этого результата мы прибегаем к введению двух типов аттракторов, чтобы разделить две различные стратегии роста во времени: быстрое исследование пространства слабоветвящимися отростками и созревание сложной морфологии за счет обильного ветвления. Мы предполагаем, что модификация алгоритма с введением динамической генерации аттракторов может объяснить процесс формирования тонких структур астроцитарной клетки.

    Kriuchechnikova A.N., Levdik T.G., Brazhe A.R.
    Modelling of astrocyte morphology with space colonization algorithm
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 465-481

    We examine a phenomenological algorithm for generating morphology of astrocytes, a major class of glial brain cells, based on morphometric data of rat brain protoplasmic astrocytes and observations of general cell development trends in vivo, based on current literature. We adapted the Space Colonization Algorithm (SCA) for procedural generation of astrocytic morphology from scratch. Attractor points used in generation were spatially distributed in the model volume according to the synapse distribution density in the rat hippocampus tissue during the first week of postnatal brain development. We analyzed and compared astrocytic morphology reconstructions at different brain development stages using morphometry estimation techniques such as Sholl analysis, number of bifurcations, number of terminals, total tree length, and maximum branching order. Using morphometric data from protoplasmic astrocytes of rats at different ages, we selected the necessary generation parameters to obtain the most realistic three-dimensional cell morphology models. We demonstrate that our proposed algorithm allows not only to obtain individual cell geometry but also recreate the phenomenon of tiling domain organization in the cell populations. In our algorithm tiling emerges due to the cell competition for territory and the assignment of unique attractor points to their processes, which then become unavailable to other cells and their processes. We further extend the original algorithm by splitting morphology generation in two phases, thereby simulating astrocyte tree structure development during the first and third-fourth weeks of rat postnatal brain development: rapid space exploration at the first stage and extensive branching at the second stage. To this end, we introduce two attractor types to separate two different growth strategies in time. We hypothesize that the extended algorithm with dynamic attractor generation can explain the formation process of fine astrocyte cell structures and maturation of astrocytic arborizations.

  9. Белотелов Н.В., Коноваленко И.А.
    Моделирование влияния подвижности особей на пространственно-временную динамику популяции на основе компьютерной модели
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 297-305

    В статье предложена компьютерная модель, описывающая пространственно-временную динамику популяции, взаимодействующей с возобновимым ресурсом. Подробно описан жизненный цикл особи. Предложен алгоритм пространственного перемещения особей по ареалу, учитывающий пищевую и социальную активность. Описаны вычислительные эксперименты с моделью, которые имитируют движения стада животных по ареалу, а также описан модельный эксперимент, когда групповой тип поведения животных вследствие изменения характеристик окружающей среды становится индивидуальным, после чего из-за изменения в параметрах окружающей среды и поведении животных формируется стадо, которое в дальнейшем переходит снова к групповому типу поведения.

    Belotelov N.V., Konovalenko I.A.
    Modeling the impact of mobility of individuals on space-time dynamics of a population by means of a computer model
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 297-305

    A computer model describing the spatial-temporal dynamics of populations of interacting with renewable resource is proposed. The life cycle of the individual is described. The algorithm for spatial mobility of individuals within an area is proposed, which takes into account nutritional and social activity. The paper presents the computational experiments with the model that mimic the movement of herds of animals in the area, and describes the model experiment when the group type of animal behavior due to changes in the characteristics of the environment and animal behavior the herd animals is formed, which later goes again in the group type of animal behavior.

    Views (last year): 2. Citations: 3 (RSCI).
  10. Белотелов Н.В., Коноваленко И.А., Назарова В.М., Зайцев В.А.
    Некоторые особенности групповой динамики в агентной модели «ресурс–потребитель»
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 833-850

    В работе исследуются особенности групповой динамики особей-агентов в компьютерной модели популяции животных, взаимодействующих между собой и с возобновимым ресурсом. Такого типа динамика были ранее обнаружены в работе [Белотелов, Коноваленко, 2016]. Модельная популяция состоит из совокупности особей. Каждая особь характеризуется своей массой, которая отождествляется с энергией. В ней подробно описана динамика энергетического баланса особи. Ареал обитания моделируемой популяции представляет собой прямоугольную область, на которой равномерно произрастает ресурс (трава).

    Описываются различные компьютерные эксперименты, проведенные с моделью при различных значениях параметров и начальных условиях. Основной целью проведения этих вычислительных экспериментов было изучение групповой (стадной) динамики особей. Выяснилось, что в достаточно широком диапазоне значений параметров и при введении пространственных неоднородностей ареала групповой тип поведения сохраняется. Численно были найдены значения параметров модельной популяции, при которых возникает режим пространственных колебаний численности. А именно, в модельной популяции периодически групповое (стадное) поведение животных сменяется на равномерное по пространству распределение, которое через определенное количество тактов вновь становится групповым. Проведены численные эксперименты по предварительному анализу факторов, влияющих на период этих решений. Оказалось, что ведущими параметрами, влияющими на частоту и амплитуду, а также на количество групп, являются подвижность особей и скорость восстановления ресурса. Проведены численные эксперименты по исследованию влияния на групповое поведение параметров, определяющих нелокальное взаимодействие между особями популяции. Обнаружено, что режимы группового поведения сохраняются достаточно длительное время при исключении факторов рождаемости особей. Подтверждено, что нелокальность взаимодействия между особями является ведущей при формировании группового поведения.

    Belotelov N.V., Konovalenko I.A., Nazarova V.M., Zaitsev V.A.
    Some features of group dynamics in the resource-consumer agent model
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 833-850

    The paper investigates the features of group dynamics of individuals-agents in the computer model of the animal population interacting with each other and with a renewable resource. This type of dynamics was previously found in [Belotelov, Konovalenko, 2016]. The model population consists of a set of individuals. Each individual is characterized by its mass, which is identified with energy. It describes in detail the dynamics of the energy balance of the individual. The habitat of the simulated population is a rectangular area where the resource grows evenly (grass).

    Various computer experiments carried out with the model under different parameter values and initial conditions are described. The main purpose of these computational experiments was to study the group (herd) dynamics of individuals. It was found that in a fairly wide range of parameter values and with the introduction of spatial inhomogeneities of the area, the group type of behavior is preserved. The values of the model population parameters under which the regime of spatial oscillations of the population occurs were found numerically. Namely, in the model population periodically group (herd) behavior of animals is replaced by a uniform distribution over space, which after a certain number of bars again becomes a group. Numerical experiments on the preliminary analysis of the factors influencing the period of these solutions are carried out. It turned out that the leading parameters affecting the frequency and amplitude, as well as the number of groups are the mobility of individuals and the rate of recovery of the resource. Numerical experiments are carried out to study the influence of parameters determining the nonlocal interaction between individuals of the population on the group behavior. It was found that the modes of group behavior persist for a long time with the exclusion of fertility factors of individuals. It is confirmed that the nonlocality of interaction between individuals is leading in the formation of group behavior.

    Views (last year): 32.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"