Результаты поиска по 'пространственно-распределенная модель':
Найдено статей: 65
  1. Фрисман Е.Я., Кулаков М.П., Ревуцкая О.Л., Жданова О.Л., Неверова Г.П.
    Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151

    Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.

    Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P.
    The key approaches and review of current researches on dynamics of structured and interacting populations
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151

    The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.

    Views (last year): 40. Citations: 2 (RSCI).
  2. Курушина С.Е., Федорова Е.А., Гуровская Ю.А.
    Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291

    В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.

    Kurushina S.E., Fedorova E.A., Gurovskaia I.A.
    Technique for analyzing noise-induced phenomena in two-component stochastic systems of reaction – diffusion type with power nonlinearity
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291

    The paper constructs and studies a generalized model describing two-component systems of reaction – diffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reaction – diffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.

  3. Павлов Е.А., Осипов Г.В.
    Синхронизация и хаос в сетях связанных отображений в приложении к моделированию сердечной динамики
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 439-453

    На основе отображения, построенного путем упрощения и редукции модели Луо–Руди, исследуется динамика ансамблей связанных элементов в приложении к моделированию пространственно-временных процессов в сердечной мышце. В частности, представлены возможности отображения в воспроизведении различных режимов сердечной активности, в том числе возбудимого и осцилляторного режимов. Рассмотрена динамика цепочек и решеток связанных осцилляторных элементов со случайным распределением индивидуальных частот. Обнаружены эффекты кластерной синхронизации и переход к глобальной синхронизации при увеличении силы связи. Проанализировано распространение импульсов по цепочке, а также концентрических и спиральных волн в двумерной решетке связанных отображений, моделирующих динамику возбудимых сред. Изучены характеристики спиральной волны в зависимости от изменения индивидуальных параметров и связи. Проведено исследование смешанных ансамблей, состоящих из возбудимых и осцилляторных элементов с градиентным изменением свойств, в том числе в приложении к задаче описания нормального и патологического характера функционирования синоатриального узла.

    Pavlov E.A., Osipov G.V.
    Synchronization and chaos in networks of coupled maps in application to modeling of cardiac dynamics
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 439-453

    The dynamics of coupled elements’ ensembles are investigated in the context of description of spatio-temporal processes in the myocardium. Basic element is map-based model constructed by simplification and reduction of Luo-Rudy model. In particular, capabilities of the model in replication of different regimes of cardiac activity are shown, including excitable and oscillatory regimes. The dynamics of 1D and 2D lattices of coupled oscillatory elements with a random distribution of individual frequencies are considered. Effects of cluster synchronization and transition to global synchronization by increasing of coupling strength are discussed. Impulse propagation in the chain of excitable cells has been observed. Analysis of 2D lattice of excitable elements with target and spiral waves have been made. The characteristics of the spiral wave has been analyzed in depending on the individual parameters of the map and coupling strength between elements of the lattice. A study of mixed ensembles consisting of excitable and oscillatory elements with a gradient changing of the properties have been made, including the task for description of normal and pathological activity of the sinoatrial node.

    Citations: 3 (RSCI).
  4. Мацак И.С., Кудрявцев Е.М., Тугаенко В.Ю.
    Моделирование погрешностей измерений диаметра широкоапертурного лазерного пучка c плоским профилем
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 113-124

    Работа посвящена моделированию инструментальных погрешностей измерения диаметра лазерного пучка при использовании метода на основе ламбертовски рассеивающего на просвет экрана. В качестве модели пучка использовалось суперлоренцево распределение. Для определения влияния на погрешность измерения каждого из параметров проводились вычислительные эксперименты, результаты которых аппроксимировались аналитическими функциями. Были получены зависимости погрешностей от относительного размера пучка, пространственной неравномерности пропускания экрана, дисторсии объектива, физического виньетирования, наклона пучка, пространственного разрешения матрицы, разрядности АЦП-камеры. Показано, что погрешность может быть менее 1 %.

    Matsak I.S., Kudryavtsev E.M., Tugaenko V.Y.
    Modelling diameter measurement errors of a wide-aperture laser beam with flat profile
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 113-124

    Work is devoted to modeling instrumental errors of a laser beam diameter measurement using a method based on a lambertian transmissive screen. Super-Lorenz distribution was used as a model of the beam. To determine the effect of each parameter on the measurement error were performed computational experiments, results of which were approximated by analytic functions. There were obtained the errors depending on relative beam size, spatial non-uniformity of the transmission screen, lens distortion, physical vignetting, beam tilt, CCD spatial resolution, ADC resolution of a camera. There was shown that the error can be less then 1 %.

    Views (last year): 3. Citations: 3 (RSCI).
  5. Демьянов А.Ю., Динариев О.Ю., Лисицын Д.А.
    Метод расчета электрических свойств насыщенных горных пород, учитывающий поверхностную проводимость
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1081-1088

    Предложен новый эффективный численный метод расчета электрических свойств горных пород с двухфазным насыщением типа «нефть–вода». Метод позволяет учитывать влияние поверхностной проводимости двойных электрических слоев, возникающих на контакте скелета породы с водным раствором в поровом пространстве. В основе метода лежит задача нахождения распределения электрического потенциала в трехмерной цифровой модели пористой среды высокого разрешения. Цифровая модель воспроизводит пространственную структуру поровых каналов на микроуровне и содержит элементы сетки объемного и поверхностного типов. Результаты расчетов показывают важность учета поверхностной проводимости.

    Demianov A.Y., Dinariev O.Y., Lisitsin D.A.
    Numerical simulation of electromagnetic properties of the saturated rock media with surface conductivity effects
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1081-1088

    New numerical simulation technique to calculate electrical properties of rocks with two-phase “oil– water” saturation is proposed. This technique takes into account surface conductivity of electrical double layers at the contact between solid rock and aqueous solution inside pore space. The numerical simulation technique is based on acquiring of electrical potential distribution in high-resolution three-dimensional digital model of porous medium. The digital model incorporates the spatial geometry of pore channels and contains bulk and surface grid cells. Numerical simulation results demonstrate the importance of surface conductivity effects.

    Views (last year): 4. Citations: 1 (RSCI).
  6. Галочкина Т.В., Вольперт В.А.
    Математическое моделирование распространения тромбина в процессе свертывания крови
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 469-486

    В случае повреждения сосуда или контакта плазмы крови с чужеродной поверхностью запускается цепь химических реакций (каскад свертывания), ведущая к формированию кровяного сгустка (тромба), основу которого составляют волокна фибрина. Ключевым компонентом каскада свертывания крови является фермент тромбин, катализирующий образование фибрина из фибриногена. Распределение концентрации тромбина определяет пространственно-временную динамику формирования кровяного сгустка. Контактный путь активации системы свертывания запускает реакцию образования тромбина в ответ на контакт с отрицательно заряженной поверхностью. Если концентрация тромбина, произведенного на этом этапе, достаточно велика, дальнейшее образование тромбина идет за счет положительных обратных связей каскада свертывания. В результате тромбин распространяется в плазме, что приводит к расщеплению фибриногена и формированию тромба. Профиль концентрации и скорость распространения тромбина в плазме постоянны и не зависят от того, как было активировано свертывание.

    Подобное поведение системы свертывания хорошо описывается решениями типа бегущей волны в системе уравнений «реакция – диффузия» на концентрации факторов крови, принимающих участие в каскаде свертывания. В настоящей работе проводится подробный анализма тематической модели, описывающей основные реакции каскада свертывания. Формулируются необходимые и достаточные условия существования решений системы типа бегущей волны. Для рассмотренной модели существование таких решений является эквивалентным существованию волновых решений упрощенной модели, полученной с помощью квазистационарного приближения и состоящей из одного уравнения, описывающего динамику концентрации тромбина.

    Упрощенная модель также позволяет нам получить аналитические оценки скорости распространения волны тромбина в рассматриваемых моделях. Скорость бегущей волны для одного уравнения была оценена с использованием метода узкой зоны реакции и с помощью кусочно-линейного приближения. Полученные формулы дают хорошее приближение скорости распространения волны тромбина как в упрощенной, так и в исходной модели.

    Galochkina T.V., Volpert V.A.
    Mathematical modeling of thrombin propagation during blood coagulation
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 469-486

    In case of vessel wall damage or contact of blood plasma with a foreign surface, the chain of chemical reactions called coagulation cascade is launched that leading to the formation of a fibrin clot. A key enzyme of the coagulation cascade is thrombin, which catalyzes formation of fibrin from fibrinogen. The distribution of thrombin concentration in blood plasma determines spatio-temporal dynamics of clot formation. Contact pathway of blood coagulation triggers the production of thrombin in response to the contact with a negatively charged surface. If the concentration of thrombin generated at this stage is large enough, further production of thrombin takes place due to positive feedback loops of the coagulation cascade. As a result, thrombin propagates in plasma cleaving fibrinogen that results in the clot formation. The concentration profile and the speed of propagation of thrombin are constant and do not depend on the type of the initial activator.

    Such behavior of the coagulation system is well described by the traveling wave solutions in a system of “reaction – diffusion” equations on the concentration of blood factors involved in the coagulation cascade. In this study, we carried out detailed analysis of the mathematical model describing the main reaction of the intrinsic pathway of coagulation cascade.We formulate necessary and sufficient conditions of the existence of the traveling wave solutions. For the considered model the existence of such solutions is equivalent to the existence of the wave solutions in the simplified one-equation model describing the dynamics of thrombin concentration derived under the quasi-stationary approximation.

    Simplified model also allows us to obtain analytical estimate of the thrombin propagation rate in the considered model. The speed of the traveling wave for one equation is estimated using the narrow reaction zone method and piecewise linear approximation. The resulting formulas give a good approximation of the velocity of propagation of thrombin in the simplified, as well as in the original model.

    Views (last year): 10. Citations: 1 (RSCI).
  7. Аристов В.В., Ильин О.В.
    Методы и задачи кинетического подхода для моделирования биологических структур
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866

    Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.

    Aristov V.V., Ilyin O.V.
    Methods and problems in the kinetic approach for simulating biological structures
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 851-866

    The biological structure is considered as an open nonequilibrium system which properties can be described on the basis of kinetic equations. New problems with nonequilibrium boundary conditions are introduced. The nonequilibrium distribution tends gradually to an equilibrium state. The region of spatial inhomogeneity has a scale depending on the rate of mass transfer in the open system and the characteristic time of metabolism. In the proposed approximation, the internal energy of the motion of molecules is much less than the energy of translational motion. Or in other terms we can state that the kinetic energy of the average blood velocity is substantially higher than the energy of chaotic motion of the same particles. We state that the relaxation problem models a living system. The flow of entropy to the system decreases in downstream, this corresponds to Shrödinger’s general ideas that the living system “feeds on” negentropy. We introduce a quantity that determines the complexity of the biosystem, more precisely, this is the difference between the nonequilibrium kinetic entropy and the equilibrium entropy at each spatial point integrated over the entire spatial region. Solutions to the problems of spatial relaxation allow us to estimate the size of biosystems as regions of nonequilibrium. The results are compared with empirical data, in particular, for mammals we conclude that the larger the size of animals, the smaller the specific energy of metabolism. This feature is reproduced in our model since the span of the nonequilibrium region is larger in the system where the reaction rate is shorter, or in terms of the kinetic approach, the longer the relaxation time of the interaction between the molecules. The approach is also used for estimation of a part of a living system, namely a green leaf. The problems of aging as degradation of an open nonequilibrium system are considered. The analogy is related to the structure, namely, for a closed system, the equilibrium of the structure is attained for the same molecules while in the open system, a transition occurs to the equilibrium of different particles, which change due to metabolism. Two essentially different time scales are distinguished, the ratio of which is approximately constant for various animal species. Under the assumption of the existence of these two time scales the kinetic equation splits in two equations, describing the metabolic (stationary) and “degradative” (nonstationary) parts of the process.

    Views (last year): 31.
  8. Лысыч М.Н.
    Компьютерное моделирование процесса обработки почвы рабочими органами почвообрабатывающих машин
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 607-627

    В работе анализируются методы исследования процесса взаимодействия почвенных сред с рабочими органами почвообрабатывающих машин. Подробно рассмотрены математические методы численного моделирования, позволяющие преодолеть недостатки аналитических и эмпирических подходов. Приводятся классификация и обзор возможностей континуальных (FEM — метод конечных элементов, CFD — вычислительная гидродинамика) и дискретных (DEM — метод дискретных элементов, SPH — гидродинамика сглаженных частиц) численных методов. На основе метода дискретных элементов разработана математическая модель, представляющая почву, в виде множества взаимодействующих сферических элементов малых размеров. Рабочие поверхности почвообрабатывающего орудия в рамках конечноэлементного приближения представлены в виде совокупности элементарных треугольников. В модели рассчитывается движение элементов почвы под действием сил контакта элементов почвы друг с другом и с рабочими поверхностями орудия (упругие силы, силы сухого и вязкого трения). Это дает возможность оценивать влияние геометрических параметров рабочих органов, технологических параметров процесса и параметров почвы на геометрические показатели смещения почвы, показатели самоустановки орудия, силовые нагрузки, показатели качества рыхления и пространственное распределение показателей. Всего исследуются 22 показателя (или распределение показателя в пространстве). Возможности математической модели демонстрируются на примере комплексного исследования процесса обработки почвы дисковой культиваторной батареей. В компьютерном эксперименте использованы виртуальный почвенный канал размером 5×1.4 м и 3D-модель дисковой культиваторной батареи. Радиус почвенных частиц принимался равным 18 мм, скорость рабочего органа — 1 м/с, общее время моделирования — 5 с. Глубина обработки составляла 10 см при углах атаки 10, 15, 20, 25 и 30°. Проверка достоверности результатов моделирования производилась на лабораторной установке, для объемного динамометрирования, путем исследования натурного образца, выполненного в полном соответствии с исследованной 3D-моделью. Контроль осуществлялся по трем составляющим вектора тягового сопротивления: $F_x$, $F_y$ и $F_z$. Сравнение данных, полученных экспериментальным путем, с данными моделирования показало, что расхождение составляет не более 22.2 %, при этом во всех случаях максимальные значения наблюдались при углах атаки 30°. Хорошая согласуемость данных по трем ключевым силовым параметрам подтверждает достоверность всего комплекса исследованных показателей.

    Lysych M.N.
    Computer simulation of the process soil treatment by tillage tools of soil processing machines
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 607-627

    The paper analyzes the methods of studying the process of interaction of soil environments with the tillage tools of soil processing machines. The mathematical methods of numerical modeling are considered in detail, which make it possible to overcome the disadvantages of analytical and empirical approaches. A classification and overview of the possibilities the continuous (FEM — finite element method, CFD — computational fluid dynamics) and discrete (DEM — discrete element method, SPH — hydrodynamics of smoothed particles) numerical methods is presented. Based on the discrete element method, a mathematical model has been developed that represents the soil in the form of a set of interacting small spherical elements. The working surfaces of the tillage tool are presented in the framework of the finite element approximation in the form of a combination of many elementary triangles. The model calculates the movement of soil elements under the action of contact forces of soil elements with each other and with the working surfaces of the tillage tool (elastic forces, dry and viscous friction forces). This makes it possible to assess the influence of the geometric parameters of the tillage tools, technological parameters of the process and soil parameters on the geometric indicators of soil displacement, indicators of the self-installation of tools, power loads, quality indicators of loosening and spatial distribution of indicators. A total of 22 indicators were investigated (or the distribution of the indicator in space). This makes it possible to reproduce changes in the state of the system of elements of the soil (soil cultivation process) and determine the total mechanical effect of the elements on the moving tillage tools of the implement. A demonstration of the capabilities of the mathematical model is given by the example of a study of soil cultivation with a disk cultivator battery. In the computer experiment, a virtual soil channel of 5×1.4 m in size and a 3D model of a disk cultivator battery were used. The radius of the soil particles was taken to be 18 mm, the speed of the tillage tool was 1 m/s, the total simulation time was 5 s. The processing depth was 10 cm at angles of attack of 10, 15, 20, 25 and 30°. The verification of the reliability of the simulation results was carried out on a laboratory stand for volumetric dynamometry by examining a full-scale sample, made in full accordance with the investigated 3D-model. The control was carried out according to three components of the traction resistance vector: $F_x$, $F_y$ and $F_z$. Comparison of the data obtained experimentally with the simulation data showed that the discrepancy is not more than 22.2%, while in all cases the maximum discrepancy was observed at angles of attack of the disk battery of 30°. Good consistency of data on three key power parameters confirms the reliability of the whole complex of studied indicators.

  9. Маничева С.В., Чернов И.А.
    Математическая модель гидридного фазового перехода в частице порошка симметричной формы
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 569-584

    В статье предложена математическая модель фазового перехода на примере гидрирования/дегидрирования порошка металла. Рассматривается одна частица, форма которой обладает некоторой симметрией. Шар, цилиндр и плоская пластина являются частными случаями симметричных форм. Модель описывает как сценарий «сжимающегося ядра» (формирование слоя новой фазы на поверхности частицы с его последующим утолщением), так и сценарий «образования и роста зародышей», при которых сплошной слой не формируется до полного исчезновения старой фазы. Модель представляет собой неклассическую диффузионную краевую задачу со свободной границей и нелинейными граничными условими III рода. Предположения симметрии позволяют свести задачу к одной пространственной переменной. Модель апробирована на серии экспериментальных данных. Показано, что влияние формы частиц на кинетику несущественно. Также показано, что ансамбль частиц различных форм с распределением по размерам может быть аппроксимирован одной частицей «среднего» размера простой формы, что оправдывает использование в моделях упрощающих предположений.

    Manicheva S.V., Chernov I.A.
    Mathematical model of hydride phase change in a symmetrical powder particle
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 569-584

    In the paper we construct the model of phase change. Process of hydriding / dehydriding is taken as an example. A single powder particle is considered under the assumption about its symmetry. A ball, a cylinder, and a flat plate are examples of such symmetrical shapes. The model desribes both the "shrinking core"(when the skin of the new phase appears on the surface of the particle) and the "nucleation and growth"(when the skin does not appear till complete vanishing of the old phase) scenarios. The model is the non-classical boundary-value problem with the free boundary and nonlinear Neumann boundary condition. The symmetry assumptions allow to reduce the problem to the single spatial variable. The model was tested on the series of experimental data. We show that the particle shape’s influence on the kinetics is insignificant. We also show that a set of particles of different shapes with size distribution can be approxomated by the single particle of the "average" size and of a simple shape; this justifies using single particle approximation and simple shapes in mathematical models.

    Views (last year): 2. Citations: 2 (RSCI).
  10. Рассматривается вертикально-распределенная трехкомпонентная модель морской экосистемы. Состояние планктонного сообщества с учетом питательных веществ анализируется в условиях активных перемещений зоопланктона в вертикальном столбе воды. Аналитически получены условия ДС-неустойчивости системы в окрестности пространственно-однородного равновесия. Численно определены области параметров, при которых пространственнооднородное равновесие устойчиво к небольшим пространственно-неоднородным возмущениям, неустойчиво по Тьюрингу и колебательно неустойчиво. Исследовано влияние параметров, определяющих биологические характеристики зоопланктона и пространственные перемещения планктона, на возможность образования пространственных структур. Показано, что при малой скорости потребления фитопланктона на пространственную неустойчивость существенно влияет убыль зоопланктона, а при больших значениях этого параметра имеют значение перемешивание фитопланктона и пространственные перемещения зоопланктона.

    Giricheva E.E.
    Modeling of plankton community state with density-dependent death and spatial activity of zooplankton
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 549-560

    A vertically distributed three-component model of marine ecosystem is considered. State of the plankton community with nutrients is analyzed under the active movement of zooplankton in a vertical column of water. The necessary conditions of the Turing instability in the vicinity of the spatially homogeneous equilibrium are obtained. Stability of the spatially homogeneous equilibrium, the Turing instability and the oscillatory instability are examined depending on the biological characteristics of zooplankton and spatial movement of plankton. It is shown that at low values of zooplankton grazing rate and intratrophic interaction rate the system is Turing instable when the taxis rate is low. Stabilization occurs either through increased decline of zooplankton either by increasing the phytoplankton diffusion. With the increasing rate of consumption of phytoplankton range of parameters that determine the stability is reduced. A type of instability depends on the phytoplankton diffusion. For large values of diffusion oscillatory instability is observed, with a decrease in the phytoplankton diffusion zone of Turing instability is increases. In general, if zooplankton grazing rate is faster than phytoplankton growth rate the spatially homogeneous equilibrium is Turing instable or oscillatory instable. Stability is observed only at high speeds of zooplankton departure or its active movements. With the increase in zooplankton search activity spatial distribution of populations becomes more uniform, increasing the rate of diffusion leads to non-uniform spatial distribution. However, under diffusion the total number of the population is stabilized when the zooplankton grazing rate above the rate of phytoplankton growth. In general, at low rate of phytoplankton consumption the spatial structures formation is possible at low rates of zooplankton decline and diffusion of all the plankton community. With the increase in phytoplankton predation rate the phytoplankton diffusion and zooplankton spatial movement has essential effect on the spatial instability.

    Views (last year): 6.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"