Результаты поиска по 'уравнения состояния':
Найдено статей: 93
  1. Шепелев В.В., Фортова С.В., Опарина Е.И.
    Использование программного комплекса Turbulence Problem Solver (TPS) для численного моделирования взаимодействия лазерного излучения с металлами
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 619-630

    Работа посвящена использованию программного пакета Turbulence Problem Solver (TPS) для численного моделирования широкого спектра лазерных задач. Возможности пакета продемонстрированы на примере численного моделирования взаимодействия фемтосекундных лазерных импульсов с металлическими пленками. Разработанный авторами программный пакет TPS предназначен для численного решения гиперболических систем дифференциальных уравнений на многопроцессорных вычислительных системах с распределенной памятью. Пакет представляет собой современный и расширяемый программный продукт. Архитектура пакета дает исследователю возможность моделировать различные физические процессы единообразно, с помощью различных численных методик и программных блоков, содержащих специфические для каждой задачи начальные условия, граничные условия и источниковые компоненты. Пакет предоставляет пользователю возможность самостоятельно расширять функциональность пакета, добавляя новые классы задач, вычислительных методов, начальных и граничных условий, а также уравнений состояния вещества. Реализованные в программном пакете численные методики тестировались на тестовых задачах в одномерной, двумерной и трехмерной геометрии, в состав которых вошли задачи Римана о распаде произвольного разрыва с различными конфигурациями точного решения.

    Тонкие пленки на подложках — важный класс мишеней для наномодификации поверхностей в плазмонике или сенсорных приложениях. Этой тематике посвящено множество статей. Большинство из них, однако, концентрируются на динамике самой пленки, уделяя мало внимания подложке и рассматри- вая ее просто как объект, поглощающий первую волну сжатия и не влияющий на возникающие вследствие облучения поверхностные структуры. В работе подробно описан вычислительный эксперимент по численному моделированию взаимодействия единичного ультракороткого лазерного импульса с золотой пленкой, напыленной на толстую стеклянную подложку. Использовалась равномерная прямоугольная сетка и численный метод Годунова первого порядка точности. Представленные результаты расчетов позволили подтвердить теорию об ударно-волновом механизме образования отверстий в металле при фемтосекундной лазерной абляции для случая тонкой золотой пленки толщиной около 50 нм на толстой стеклянной подложке.

    Shepelev V.V., Fortova S.V., Oparina E.I.
    Application of Turbulence Problem Solver (TPS) software complex for numerical modeling of the interaction between laser radiation and metals
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 619-630

    The work is dedicated to the use of the software package Turbulence Problem Solver (TPS) for numerical simulation of a wide range of laser problems. The capabilities of the package are demonstrated by the example of numerical simulation of the interaction of femtosecond laser pulses with thin metal bonds. The software package TPS developed by the authors is intended for numerical solution of hyperbolic systems of differential equations on multiprocessor computing systems with distributed memory. The package is a modern and expandable software product. The architecture of the package gives the researcher the opportunity to model different physical processes in a uniform way, using different numerical methods and program blocks containing specific initial conditions, boundary conditions and source terms for each problem. The package provides the the opportunity to expand the functionality of the package by adding new classes of problems, computational methods, initial and boundary conditions, as well as equations of state of matter. The numerical methods implemented in the software package were tested on test problems in one-dimensional, two-dimensional and three-dimensional geometry, which included Riemann's problems on the decay of an arbitrary discontinuity with different configurations of the exact solution.

    Thin films on substrates are an important class of targets for nanomodification of surfaces in plasmonics or sensor applications. Many articles are devoted to this subject. Most of them, however, focus on the dynamics of the film itself, paying little attention to the substrate, considering it simply as an object that absorbs the first compression wave and does not affect the surface structures that arise as a result of irradiation. The paper describes in detail a computational experiment on the numerical simulation of the interaction of a single ultrashort laser pulse with a gold film deposited on a thick glass substrate. The uniform rectangular grid and the first-order Godunov numerical method were used. The presented results of calculations allowed to confirm the theory of the shock-wave mechanism of holes formation in the metal under femtosecond laser action for the case of a thin gold film with a thickness of about 50 nm on a thick glass substrate.

    Views (last year): 15.
  2. Четырбоцкий А.Н., Четырбоцкий В.А.
    Модель мантийной конвекции в зоне полного цикла субдукции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1385-1398

    Разработана численная 2D-модель погружения холодной океанической плиты в толщу верхней мантии Земли, где этапу начального погружения плиты предшествует установление режима термогравитационной конвекции мантийного вещества. Модельным приближением мантии выступает двумерный образ несжимаемой ньютоновской квазижидкости в декартовой системе координат, где вследствие высокой вязкости среды уравнения мантийной конвекции принимаются в стоксовском приближении. Полагается, что вместе с плитой в верхние слои мантии поступает просочившаяся сюда морская вода. С глубиной рост давления и температуры приводит к определенным потерям ее легких фракций и флюидов, потерям воды и газов водосодержащих минералов плиты, перестройке их кристаллической решетки и, как следствие, фазовым превращениям. Эти потери обусловливают рост плотности плиты и неравномерность распределения вдоль плиты напряжений (начальные участки плиты оказываются менее плотными), что в последствии вместе с воздействием на плиту мантийных течений вызывает ее фрагментацию. Рассматривается состояние мантийной конвекции, когда плита и ее отдельные фрагменты опустились на подошву верхней мантии. Разработаны вычислительные схемы решения уравнений модели. Расчеты мантийной конвекции выполнены в терминах приближения Стокса для завихренности и функции тока, а для расчетов состояния и погружения плиты использован SPH. Выполнен ряд вычислительных экспериментов. Показано, что вследствие воздействия на плиту мантийной конвекции и с развитием вдоль плиты неоднородного поля напряжений происходит ее фрагментация. Следуя уравнениям модели, оценивается время финальной стадии субдукции, т. е. времени выхода всей океанической плиты на дно верхней мантии. В геодинамике этот процесс определяется коллизией плит, следует непосредственно за субдукцией и рассматривается обычно в качестве конечного этапа цикла Уилсона (т. е. цикла развития складчатых поясов).

    Chetyrbotsky A.N., Chetyrbotskii V.A.
    Model of mantle convection in a zone of a complete subduction cycle
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1385-1398

    A 2D numerical model of the immersion of a cold oceanic plate into the thickness of the Earth’s upper mantle has been developed, where the stage of the initial immersion of the plate is preceded by the establishment of a regime of thermogravitational convection of the mantle substance. The model approximation of the mantle is a two-dimensional image of an incompressible Newtonian quasi-liquid in a Cartesian coordinate system, where, due to the high viscosity of the medium, the equations of mantle convection are accepted in the Stokes approximation. It is assumed that seawater that has leaked here enters the first horizons of the mantle together with the plate. With depth, the increase in pressure and temperature leads to certain losses of its light fractions and fluids, losses of water and gases of water-containing minerals of the plate, restructuring of their crystal lattice and, as a consequence, phase transformations. These losses cause an increase in the plate density and an uneven distribution of stresses along the plate (the initial sections of the plate are denser), which subsequently, together with the effect of mantle currents on the plate, causes its fragmentation. The state of mantle convection is considered when the plate and its individual fragments have descended to the bottom of the upper mantle. Computational schemes for solving the model equations have been developed. Mantle convection calculations are performed in terms of the Stokes approximation for vorticity and the stream function, and SPH is used to calculate the state and subsidence of the plate. A number of computational experiments have been performed. It is shown that fragmentation of the plate occurs due to the effect of mantle convection on the plate and the development of inhomogeneous stress fields along the plate. Following the equations of the model, the time of the final stage of subduction is estimated, i.e. the time of the entire oceanic plate reaching the bottom of the upper mantle. In geodynamics, this process is determined by the collision of plates that immediately follows subduction and is usually considered as the final stage of the Wilson cycle (i. e., the cycle of development of folded belts).

  3. Башкирцева И.А.
    Анализ стохастических равновесий и индуцированных шумом переходов в нелинейных дискретных системах
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 559-571

    В работе рассматриваются дискретные динамические системы, находящиеся под действием случайных возмущений. Динамика отклонений стохастических решений от детерминированных равновесий исследуется с помощью систем первого приближения. Получены необходимые и достаточные условия, при которых уравнения для первых двух моментов этих отклонений имеют устойчивые стационарные решения. Стационарные вторые моменты используются для оценки разброса случайных состояний вокруг устойчивых равновесий нелинейных систем, а также для анализа индуцированных шумом переходов между бассейнами притяжения этих равновесий. Конструктивность предлагаемого подхода демонстрируется на примере анализа различных стохастических режимов для модели популяционной динамики Рикера с эффектом Олли.

    Bashkirtseva I.A.
    Analysis of stochastically forced equilibria and noise-induced transitions in nonlinear discrete systems
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 559-571

    Stochastically forced discrete dynamical systems are considered. Using first approximation systems, we study dynamics of deviations of stochastic solutions from deterministic equilibria. Necessary and sufficient conditions of the existence of stable stationary solutions of equations for mean-square deviations are derived. Stationary values of these mean-square deviations are used for the estimations of the dispersion of random states nearby stable equilibria and analysis of noise-induced transitions. Constructive application of the suggested technique to the analysis of various stochastic regimes in Ricker population model with Allee effect is demonstrated.

    Views (last year): 1. Citations: 2 (RSCI).
  4. Холодов Я.А., Алексеенко А.Е., Холодов А.С., Васильев М.О., Мишин В.Д.
    Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть II
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1205-1219

    Целью данной работы является обобщение макроскопических гидродинамических моделей второго порядка, описывающих автомобильное движение, с помощью алгоритма построения адекватного реальным измерениям уравнения состояния — зависимости давления от плотности транспортного потока, получаемого эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов. Доказано, что именно вид уравнения состояния, замыкающего систему модельных уравнений и полученного из экспериментально наблюдаемого вида фундаментальной диаграммы — зависимости интенсивности транспортного потока от его плотности, полностью определяет все свойства любой феноменологической модели. Проверка работоспособности предложенного подхода проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, предоставляемых системой PeMS (http://pems.dot.ca.gov/), таких как моделирование движения трафика на заданном участке транспортной сети автострады I-580 в Калифорнии.

    Kholodov Y.A., Alekseenko A.E., Kholodov A.S., Vasilev M.O., Mishin V.D.
    Development, calibration and verification of mathematical model for multilane urban road traffic flow. Part II
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1205-1219

    The goal of this work is to generalize second order mathematical models for automotive flow using algorithm for building state equation — the dependency of pressure on traffic density — which is adequate with regard to real world data. The form of state equation, which closes the system of model equations, is obtained from experimental form of fundamental diagram — the dependency of traffic flow intensity on its density, and completely defines all properties of any phenomenological model. The proposed approach was verified using numerical experiments on typical traffic data, obtained from PeMS system (http://pems.dot.ca.gov/), using segment of I-507 highway in California, USA as model system.

    Views (last year): 3.
  5. Курушина С.Е., Шаповалова Е.А.
    Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607

    В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.

    Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.

    В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.

    Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.

    Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.

    Kurushina S.E., Shapovalova E.A.
    Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607

    We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.

    We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.

    In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.

    Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.

    Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.

    Views (last year): 7.
  6. Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.

    Okulov A.Y.
    Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992

    The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.

  7. Конюхов А.В., Ростилов Т.А.
    Численное моделирование сходящихся сферических ударных волн с нарушенной симметрией
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 59-71

    На основе гидродинамического 3D-моделирования с использованием уравнения состояния газа твердых сфер Карнахана – Старлинга выполнено исследование развития периодических возмущений сходящейся сферической ударной волны, приводящих к ограничению кумуляции. Метод решения системы уравнений Эйлера на подвижных (сжимающихся) сетках позволяет с высокой точностью проследить эволюцию фронта сходящейся ударной волны в широком диапазоне изменения ее радиуса. Скорость сжатия расчетной сетки адаптируется к движению фронта ударной волны, при этом движение границ расчетной области выбирается из условия сверхзвуковой скорости ее движения относительно среды. Это приводит к тому, что решение на этапе сжатия определяется только начальными данными. Применена схема TVD второго порядка аппроксимации для реконструкции вектора консервативных переменных на границах расчетных ячеек в сочетании со схемой Русанова для расчета численного вектора потоков. Выбор обусловлен сильной тенденцией к проявлению в расчетах численной неустойчивости типа «карбункул», известной для других классов течений. Использование сжимающихся сеток позволило исследовать детальную картину течения на масштабе прекращения кумуляции, что невозможно в рамках метода геометрической динамики ударных волн Уизема (Whitham), применявшегося ранее другими авторами для расчета сходящихся ударных волн. Исследование показало, что ограничение кумуляции связанно с переходом от маховского взаимодействия сегментов сходящейся ударной волны к регулярному вследствие прогрессирующего роста отношения азимутальной скорости на фронте ударной волны к радиальной при уменьшении ее радиуса. Установлено, что это отношение представляется в виде произведения ограниченной осциллирующей функции радиуса и степенной функции радиуса с показателем степени, зависящим от начальной плотности упаковки в модели твердых сфер. Показано, что увеличение параметра плотности упаковки в модели твердых сфер приводит к значительному увеличению давлений, достигаемых в ударной волне с нарушенной симметрией. Впервые в расчете показано, что на масштабе прекращения кумуляции течение сопровождается формированием высокоэнергетичных вихрей, в которые вовлечено вещество, подвергшееся наибольшему ударно-волновому сжатию. Оказывая влияние на процессы тепло- и массопереноса в области наибольшего сжатия, это обстоятельство является важным для актуальных практических применений сходящихся ударных волн в целях инициирования реакций (детонации, фазовых переходов, управляемого термоядерного синтеза).

    Konyukhov A.V., Rostilov T.A.
    Numerical simulation of converging spherical shock waves with symmetry violation
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 59-71

    The study of the development of π-periodic perturbations of a converging spherical shock wave leading to cumulation limitation is performed. The study is based on 3D hydrodynamic calculations with the Carnahan – Starling equation of state for hard sphere fluid. The method of solving the Euler equations on moving (compressing) grids allows one to trace the evolution of the converging shock wave front with high accuracy in a wide range of its radius. The compression rate of the computational grid is adapted to the motion of the shock wave front, while the motion of the boundaries of the computational domain satisfy the condition of its supersonic velocity relative to the medium. This leads to the fact that the solution is determined only by the initial data at the grid compression stage. The second order TVD scheme is used to reconstruct the vector of conservative variables at the boundaries of the computational cells in combination with the Rusanov scheme for calculating the numerical vector of flows. The choice is due to a strong tendency for the manifestation of carbuncle-type numerical instability in the calculations, which is known for other classes of flows. In the three-dimensional case of the observed force, the carbuncle effect was obtained for the first time, which is explained by the specific nature of the flow: the concavity of the shock wave front in the direction of motion, the unlimited (in the symmetric case) growth of the Mach number, and the stationarity of the front on the computational grid. The applied numerical method made it possible to study the detailed flow pattern on the scale of cumulation termination, which is impossible within the framework of the Whitham method of geometric shock wave dynamics, which was previously used to calculate converging shock waves. The study showed that the limitation of cumulation is associated with the transition from the Mach interaction of converging shock wave segments to a regular one due to the progressive increase in the ratio of the azimuthal velocity at the shock wave front to the radial velocity with a decrease in its radius. It was found that this ratio is represented as a product of a limited oscillating function of the radius and a power function of the radius with an exponent depending on the initial packing density in the hard sphere model. It is shown that increasing the packing density parameter in the hard sphere model leads to a significant increase in the pressures achieved in a shock wave with broken symmetry. For the first time in the calculation, it is shown that at the scale of cumulation termination, the flow is accompanied by the formation of high-energy vortices, which involve the substance that has undergone the greatest shock-wave compression. Influencing heat and mass transfer in the region of greatest compression, this circumstance is important for current practical applications of converging shock waves for the purpose of initiating reactions (detonation, phase transitions, controlled thermonuclear fusion).

  8. Морозов И.И., Гасников А.В., Тарасов В.Н., Холодов Я.А., Холодов А.С.
    Численное исследование транспортных потоков на основе гидродинамических моделей
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 389-412

    Целью данной работы является обобщение макроскопических гидродинамических моделей, описывающих автомобильное движение, с помощью алгоритма построения адекватного реальным наблюдаемым условиям уравнения состояния — зависимости давления от плотности транспортного потока, определяемого по экспериментальным данным (возможно, с использованием параметрических решений модельных уравнений). Доказано, что именно вид уравнения состояния, замыкающего систему модельных уравнений и полученного из экспериментально наблюдаемого вида фундаментальной диаграммы — зависимости интенсивности транспортного потока от его плотности, полностью определяет все свойства исследуемой феноменологической
    модели.

    Morozov I.I., Gasnikov A.V., Tarasov V.N., Kholodov Y.A., Kholodov A.S.
    Numerical study of traffic flows by the hydrodynamic models
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 389-412

    The purpose of this paper is to generalize the macroscopic hydrodynamic vehicular traffic models by using the algorithm for constructing the adequate state equation — dependence the pressure from traffic density by taking into account the real experimental data (possibly using the parametric solutions for model equations). It is proved that this kind of state equation which closed model equations system and obtained from the experimentally observed form of the fundamental diagram — dependence the traffic intensity from its density, completely determines the all properties of the used phenomenological model.

    Views (last year): 7. Citations: 7 (RSCI).
  9. Волохова А.В., Земляная Е.В., Лахно В.Д., Амирханов И.В., Пузынин И.В., Пузынина Т.П.
    Численное исследование фотовозбужденных поляронных состояний в воде
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 253-261

    Разработан метод и комплекс программ для численного моделирования процесса формирования поляронных состояний в конденсированных средах. Проведено численное исследование этого процесса для водной среды при воздействии лазерного облучения в ультрафиолетовом диапазоне. Показано, что в рамках предложенного подхода удается численно воспроизвести экспериментальные данные по формированию гидратированных электронов. Представлена схема численного решения системы нелинейных дифференциальных уравнений в частных производных, описывающих динамическую модельпо лярона. Программная реализация выполнена с использованием технологии параллельного программирования MPI. Обсуждаются численные результаты в сравнении с экспериментальными данными и теоретическими оценками.

    Volokhova A.V., Zemlyanay E.V., Lakhno V.D., Amirkhanov I.V., Puzynin I.V., Puzynina T.P.
    Numerical investigation of photoexcited polaron states in water
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 253-261

    A method and a complex of computer programs are developed for the numerical simulation of the polaron states excitation process in condensed media. A numerical study of the polaron states formation in water under the action of the ultraviolet range laser irradiation is carried out. Our approach allows to reproduce the experimental data of the hydrated electrons formation. A numerical scheme is presented for the solution of the respective system of nonlinear partial differential equations. Parallel implementation is based on the MPI technique. The numerical results are given in comparison with the experimental data and theoretical estimations.

    Citations: 1 (RSCI).
  10. Абделхафиз М.А., Цибулин В.Г.
    Моделирование анизотропной конвекции бинарной жидкости, насыщающей пористую среду
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 801-816

    В предположении анизотропии свойств жидкости и среды моделируется возникновение гравитационной конвекции в пористом прямоугольнике, насыщенном теплопроводной жидкостью с примесью и подогреваемом снизу. Рассматривается плоская задача на основе уравнений Дарси – Буссинеска для бинарной жидкости с учетом эффекта Соре. Устанавливаются условия, при которых система уравнений относительно функции тока, отклонений температуры и концентрации от равновесного состояния является косимметричной и возможно ответвление от механического равновесия непрерывного семейства стационарных движений.

    Показано, что в условиях существования косимметрии имеются подобласти параметров, для которых критические значения температурного и концентрационного чисел Рэлея находятся по явным формулам. Для случая монотонной неустойчивости механического равновесия выведены формулы критических чисел Рэлея и приведены результаты подтверждающих вычислений.

    Развита конечно-разностная дискретизация задачи второго порядка точности по пространственным переменным, сохраняющая косимметричность исследуемой системы. С помощью разработанной численной схемы проведен анализ устойчивости механического равновесия при различных комбинациях управляющих параметров.

    На плоскости температурного и концентрационного чисел Рэлея представлены нейтральные кривые устойчивости механического равновесия и рассчитаны участки колебательной неустойчивости. Установлена зависимость от параметров термодиффузии концентрационного числа Рэлея, при котором колебательная неустойчивость предшествует монотонной. В общей ситуации, когда не выполняются условия косимметрии, выведенные формулы критических чисел Рэлея могут быть использованы для оценки порогов возникновения конвекции.

    Abdelhafez M.A., Tsybulin V.G.
    Modeling of anisotropic convection for the binary fluid in porous medium
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 801-816

    We study an appearance of gravitational convection in a porous medium saturated by the double-diffusive fluid. The rectangle heated from below is considered with anisotropy of media properties. We analyze Darcy – Boussinesq equations for a binary fluid with Soret effect.

    Resulting system for the stream function, the deviation of temperature and concentration is cosymmetric under some additional conditions for the parameters of the problem. It means that the quiescent state (mechanical equilibrium) loses its stability and a continuous family of stationary regimes branches off. We derive explicit formulas for the critical values of the Rayleigh numbers both for temperature and concentration under these conditions of the cosymmetry. It allows to analyze monotonic instability of mechanical equilibrium, the results of corresponding computations are presented.

    A finite-difference discretization of a second-order accuracy is developed with preserving of the cosymmetry of the underlying system. The derived numerical scheme is applied to analyze the stability of mechanical equilibrium.

    The appearance of stationary and nonstationary convective regimes is studied. The neutral stability curves for the mechanical equilibrium are presented. The map for the plane of the Rayleigh numbers (temperature and concentration) are displayed. The impact of the parameters of thermal diffusion on the Rayleigh concentration number is established, at which the oscillating instability precedes the monotonic instability. In the general situation, when the conditions of cosymmetry are not satisfied, the derived formulas of the critical Rayleigh numbers can be used to estimate the thresholds for the convection onset.

    Views (last year): 27.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"