Результаты поиска по 'assessment':
Найдено статей: 102
  1. Lyubushin A.A., Kopylova G.N., Kasimova V.A., Taranova L.N.
    Multifractal and entropy statistics of seismic noise in Kamchatka in connection with the strongest earthquakes
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1507-1521

    The study of the properties of seismic noise in Kamchatka is based on the idea that noise is an important source of information about the processes preceding strong earthquakes. The hypothesis is considered that an increase in seismic hazard is accompanied by a simplification of the statistical structure of seismic noise and an increase in spatial correlations of its properties. The entropy of the distribution of squared wavelet coefficients, the width of the carrier of the multifractal singularity spectrum, and the Donoho – Johnstone index were used as statistics characterizing noise. The values of these parameters reflect the complexity: if a random signal is close in its properties to white noise, then the entropy is maximum, and the other two parameters are minimum. The statistics used are calculated for 6 station clusters. For each station cluster, daily median noise properties are calculated in successive 1-day time windows, resulting in an 18-dimensional (3 properties and 6 station clusters) time series of properties. To highlight the general properties of changes in noise parameters, a principal component method is used, which is applied for each cluster of stations, as a result of which the information is compressed into a 6-dimensional daily time series of principal components. Spatial noise coherences are estimated as a set of maximum pairwise quadratic coherence spectra between the principal components of station clusters in a sliding time window of 365 days. By calculating histograms of the distribution of cluster numbers in which the minimum and maximum values of noise statistics are achieved in a sliding time window of 365 days in length, the migration of seismic hazard areas was assessed in comparison with strong earthquakes with a magnitude of at least 7.

  2. Tskhai A.A., Romanov M.A., Kupriianov V.A.
    Model of assimilation potential in lake ecosystem on the example of biogenic pollutants
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1447-1465

    A model of biogeochemical cycles for nutrient transformation in the ecosystem of a water body has been developed using the example of the Lake Teletskoye (TL) to assess its assimilation potential in the absence of direct measurements for total nitrogen and phosphorus concentrations, instead of which the corresponding simulated data. The validity is justified by checking the adequacy of the simulation results to the data of average monthly long-term observations for all variables of the state for model. The model was calibrated with taking into account data from observations of water quality in 1985–2003, as well as a scenario version of the hydrological regime in 2016. The analysis of the intra-annual changeability of state variables, nitrogen and phosphorus inputs and outputs in TL water is given. The preliminary values of the permissible load N and P on the lake is accessed. The model analysis showed that the lake has practically no assimilation potential with respect to phosphorus compounds. The corresponding values of concentrations are equal to: Ptot. = 0.013 gP/m3, which is equal to the average annual content over the period of 18-year observations. The threshold content of Ntot. = 0.895 gN/m3. The assimilation potential for nitrogen is small, within the second significant digit after the decimal point, bearing in mind that its simulated average annual value is 0.836 gN/m3. The results of simulation indicate that the TL waters, due to the low water temperatures, along with their unique purity, differ in an extremely poorly developed community of hydrobionts. In the case of other lakes, the increase of anthropogenic pressure could be mitigated by utilization due to the vital activity of sufficiently developed hydrobionts communities. Here, there is no sufficient self-purification resource, and a relatively small increase in anthropogenic load can lead to a violation of the sustainability.

  3. Adamovskiy Y.R., Bohush R.P., Naumovich N.M.
    Prediction of frequency resource occupancy in a cognitive radio system using the Kolmogorov – Arnold neural network
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 109-123

    For cognitive radio systems, it is important to use efficient algorithms that search for free channels that can be provided to secondary users. Therefore, this paper is devoted to improving the accuracy of prediction frequency resource occupancy of a cellular communication system using spatiotemporal radio environment maps. The formation of a radio environment map is implemented for the fourthgeneration cellular communication system Long-Term Evolution. Taking this into account, a model structure has been developed that includes data generation and allows training and testing of an artificial neural network to predict the occupancy of frequency resources presented as the contents of radio environment map cells. A method for assessing prediction accuracy is described. The simulation model of the cellular communication system is implemented in the MatLab. The developed frequency resource occupancy prediction model is implemented in the Python. The complete file structure of the model is presented. The experiments were performed using artificial neural networks based on the Long Short-Term Memory and Kolmogorov – Arnold neural network architectures, taking into account its modification. It was found that with an equal number of parameters, the Kolmogorov –Arnold neural network learns faster for a given task. The obtained research results indicate an increase in the accuracy of prediction the occupancy of the frequency resource of the cellular communication system when using the Kolmogorov – Arnold neural network.

  4. Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Experimental identification of the organization of mental calculations of the person on the basis of algebras of different associativity
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 311-327

    The work continues research on the ability of a person to improve the productivity of information processing, using parallel work or improving the performance of analyzers. A person receives a series of tasks, the solution of which requires the processing of a certain amount of information. The time and the validity of the decision are recorded. The dependence of the average solution time on the amount of information in the problem is determined by correctly solved problems. In accordance with the proposed method, the problems contain calculations of expressions in two algebras, one of which is associative and the other is nonassociative. To facilitate the work of the subjects in the experiment were used figurative graphic images of elements of algebra. Non-associative calculations were implemented in the form of the game “rock-paper-scissors”. It was necessary to determine the winning symbol in the long line of these figures, considering that they appear sequentially from left to right and play with the previous winner symbol. Associative calculations were based on the recognition of drawings from a finite set of simple images. It was necessary to determine which figure from this set in the line is not enough, or to state that all the pictures are present. In each problem there was no more than one picture. Computation in associative algebra allows the parallel counting, and in the absence of associativity only sequential computations are possible. Therefore, the analysis of the time for solving a series of problems reveals a consistent uniform, sequential accelerated and parallel computing strategy. In the experiments it was found that all subjects used a uniform sequential strategy to solve non-associative problems. For the associative task, all subjects used parallel computing, and some have used parallel computing acceleration of the growth of complexity of the task. A small part of the subjects with a high complexity, judging by the evolution of the solution time, supplemented the parallel account with a sequential stage of calculations (possibly to control the solution). We develop a special method for assessing the rate of processing of input information by a person. It allowed us to estimate the level of parallelism of the calculation in the associative task. Parallelism of level from two to three was registered. The characteristic speed of information processing in the sequential case (about one and a half characters per second) is twice less than the typical speed of human image recognition. Apparently the difference in processing time actually spent on the calculation process. For an associative problem in the case of a minimum amount of information, the solution time is near to the non-associativity case or less than twice. This is probably due to the fact that for a small number of characters recognition almost exhausts the calculations for the used non-associative problem.

    Views (last year): 16.
  5. Katasev A.S.
    Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492

    This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.

    Views (last year): 12.
  6. Lobacheva L.V., Borisova E.V.
    Simulation of pollution migration processes at municipal solid waste landfills
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 369-385

    The article reports the findings of an investigation into pollution migration processes at the municipal solid waste (MSW) landfill located in the water protection zone of Lake Seliger (Tver Region). The distribution of pollutants is investigated and migration parameters are determined in field and laboratory conditions at the landfill site. A mathematical model describing physical and chemical processes of substance migration in soil strata is constructed. Pollutant migration is found to be due to a variety of factors. The major ones, having a significant impact on the migration of MSW ingredients and taken into account mathematically, include convective transport, diffusion and sorption processes. A modified mathematical model differs from its conventional counterparts by considering a number of parameters reflecting the decrease in the concentration of ammonium and nitrate nitrogen ions in ground water (transpiration by plant roots, dilution with infiltration waters, etc.). An analytical solution to assess the pollutant spread from the landfill is presented. The mathematical model provides a set of simulation models helping to obtain a computational solution of specific problems, vertical and horizontal migration of substances in the underground flow. Numerical experiments, analytical solutions, as well as field and laboratory data was studied the dynamics of pollutant distribution in the object under study up to the lake. A long-term forecast for the spread of landfill pollution is made. Simulation experiments showed that some zones of clean groundwater interact with those of contaminated groundwater during the pollution migration from the landfill, each characterized by a different pollutant content. The data of a computational experiments and analytical calculations are consistent with the findings of field and laboratory investigations of the object and give grounds to recommend the proposed models for predicting pollution migration from a landfill. The analysis of the pollution migration simulation allows to substantiate the numerical estimates of the increase in $NH_4^+$ and $NO_3^-$ ion concentration with the landfill operation time. It is found that, after 100 years following the landfill opening, toxic filtrate components will fill the entire pore space from the landfill to the lake resulting in a significant deterioration of the ecosystem of Lake Seliger.

  7. Lysych M.N.
    Computer simulation of the process soil treatment by tillage tools of soil processing machines
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 607-627

    The paper analyzes the methods of studying the process of interaction of soil environments with the tillage tools of soil processing machines. The mathematical methods of numerical modeling are considered in detail, which make it possible to overcome the disadvantages of analytical and empirical approaches. A classification and overview of the possibilities the continuous (FEM — finite element method, CFD — computational fluid dynamics) and discrete (DEM — discrete element method, SPH — hydrodynamics of smoothed particles) numerical methods is presented. Based on the discrete element method, a mathematical model has been developed that represents the soil in the form of a set of interacting small spherical elements. The working surfaces of the tillage tool are presented in the framework of the finite element approximation in the form of a combination of many elementary triangles. The model calculates the movement of soil elements under the action of contact forces of soil elements with each other and with the working surfaces of the tillage tool (elastic forces, dry and viscous friction forces). This makes it possible to assess the influence of the geometric parameters of the tillage tools, technological parameters of the process and soil parameters on the geometric indicators of soil displacement, indicators of the self-installation of tools, power loads, quality indicators of loosening and spatial distribution of indicators. A total of 22 indicators were investigated (or the distribution of the indicator in space). This makes it possible to reproduce changes in the state of the system of elements of the soil (soil cultivation process) and determine the total mechanical effect of the elements on the moving tillage tools of the implement. A demonstration of the capabilities of the mathematical model is given by the example of a study of soil cultivation with a disk cultivator battery. In the computer experiment, a virtual soil channel of 5×1.4 m in size and a 3D model of a disk cultivator battery were used. The radius of the soil particles was taken to be 18 mm, the speed of the tillage tool was 1 m/s, the total simulation time was 5 s. The processing depth was 10 cm at angles of attack of 10, 15, 20, 25 and 30°. The verification of the reliability of the simulation results was carried out on a laboratory stand for volumetric dynamometry by examining a full-scale sample, made in full accordance with the investigated 3D-model. The control was carried out according to three components of the traction resistance vector: $F_x$, $F_y$ and $F_z$. Comparison of the data obtained experimentally with the simulation data showed that the discrepancy is not more than 22.2%, while in all cases the maximum discrepancy was observed at angles of attack of the disk battery of 30°. Good consistency of data on three key power parameters confirms the reliability of the whole complex of studied indicators.

  8. Oleynik E.B., Ivashina N.V., Shmidt Y.D.
    Migration processes modelling: methods and tools (overview)
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232

    Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.

    Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.

    The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.

  9. Malkov S.Yu., Rubinstein A.A.
    The model of switching mode of reproduction with a continuous set of production subsystems under the conditions of balanced growth
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 501-519

    This paper presents new research results that have been conducted at the Institute of Economics of the Russian Academy of Sciences since 2011 under the leadership of Academician of the Russian Academy of Sciences V. I.Mayevsky. These works are aimed at developing the theory of switching mode of reproduction and corresponding mathematical models, the peculiarity of which is that they explicitly model the interaction of the financial and real sectors of the economy, and the country’s economy itself is not disaggregated according to the sectoral principle (engineering, agriculture, services, etc.), but by production subsystems that differ from each other by the age of the fixed capital. One of the mathematical difficulties of working with such models, called models of switching mode of reproduction (SMR), is the difficulty of modeling competitive relationships between subsystems of different “ages”. Therefore, until now, the interaction of a finite number of production subsystems has been considered in the SMR models, the models themselves were of a discrete-continuous nature, calculations were done exclusively on computers, and obtaining analytical dependencies was difficult. This paper shows that for the special case of balanced economic growth and a continuum of production subsystems, it is possible to obtain analytical expressions that allow a better understanding of the impact of monetary policy on economic dynamics. In addition to purely scientific interest, this is of great practical importance, since it allows us to assess the possible reaction of the real sector of the economy to changes in the monetary sphere without conducting complex simulation calculations.

  10. Makhov S.A.
    The long-term empirical macro model of world dynamics
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 883-891

    The work discusses the methodological basis and problems of modeling of world dynamics. Outlines approaches to the construction of a new simulation model of global development and the results of the simulation. The basis of the model building is laid empirical approach which based on the statistical analysis of the main socio-economic indicators. On the basis of this analysis identified the main variables. Dynamic equations (in continuous differential form) were written for these variables. Dependencies between variables were selected based on the dynamics of indicators in the past and on the basis of expert assessments, while econometric techniques were used, based on regression analysis. Calculations have been performed for the resulting dynamic equations system, the results are presented in the form of a trajectories beam for those indicators that are directly observable, and for which statistics are available. Thus, it is possible to assess the scatter of the trajectories and understand the predictive capability of this model.

    Views (last year): 4. Citations: 3 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"