Результаты поиска по 'discrete models':
Найдено статей: 89
  1. Ilyin O.V.
    The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722

    In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.

    In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.

    Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.

    Views (last year): 2.
  2. Bulatov A.A., Syssoev A.A., Iudin D.I.
    Simulation of lightning initiation on the basis of dynamical grap
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 125-147

    Despite numerous achievements of modern science the problem of lightning initiation in an electrodeless thundercloud, the maximum electric field strength inside which is approximately an order of magnitude lower than the dielectric strength of air, remains unsolved. Although there is no doubt that discharge activity begins with the appearance of positive streamers, which can develop under approximately half the threshold electric field as compared to negative ones, it remains unexplored how cold weakly conducting streamer systems unite in a joint hot well-conducting leader channel capable of self-propagation due to effective polarization in a relatively small external field. In this study, we present a self-organizing transport model which is applied to the case of electric discharge tree formation in a thundercloud. So, the model is aimed at numerical simulation of the initial stage of lightning discharge development. Among the innovative features of the model are the absence of grid spacing, high spatiotemporal resolution, and consideration of temporal evolution of electrical parameters of transport channels. The model takes into account the widely known asymmetry between threshold fields needed for positive and negative streamers development. In our model, the resulting well-conducting leader channel forms due to collective effect of combining the currents of tens of thousands of interacting streamer channels each of which initially has negligible conductivity and temperature that does not differ from the ambient one. The model bipolar tree is a directed graph (it has both positive and negative parts). It has morphological and electrodynamic characteristics which are intermediate between laboratory long spark and developed lightning. The model has universal character which allows to use it in other tasks related to the study of transport (in the broad sense of the word) networks.

  3. Kazarnikov A.V.
    Analysing the impact of migration on background social strain using a continuous social stratification model
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673

    The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.

  4. Revutskaya O.L., Frisman E.Y.
    Harvesting impact on population dynamics with age and sex structure: optimal harvesting and the hydra effect
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1107-1130

    Based on the time-discrete model, we study the effect of selective proportional harvesting on the population dynamics with age and sex structure. When constructing the model, we assume that the population birth rate depends on the ratio of the sexes and the number of formed pairs. The regulation of population growth is carried out by limiting the juvenile’s survival when the survival of immature individuals decreases with an increase in the numbers of sex and age classes. We consider cases where the harvest is carried out only from a younger age class or from a group of mature females or males. We find that the harvesting of males or females at the optimal level is responsible for changing the ratio of females to males (taking into account the average size of the harem). We show that the maximum number of harvested males is achieved either at such a harvest rate when their excess number is withdrawn and the balance of sexes is established or at such an optimal catch quota at which the sex ratio is shifted towards breeding females. Optimal female harvesting, in which the highest number of them are taken, either maintains a preexisting shortage of adult males or leads to an excess of males or the fixing of a sex balance. We find that, depending on the population parameters for all considered harvesting strategies, the hydra effect can observe, i. e., the equilibrium size of the exploited sex and age-specific group (after reproduction) can increase with the growth of harvesting intensity. The selective harvesting, due to which the hydra effect occurs, simultaneously leads to an increase remaining population size and the number of harvested individuals. At the same time, the size of the exploited group after reproduction can become even more than without exploitation. Equilibrium harvesting with the optimal harvest rate that maximizes yield leads to a population size decrease. The effect of hydra is at lower values of the catch quota than the optimal harvest rate. At the same time, the consequence of the hydra effect may be a higher abundance of the age-sex group under optimal exploitation compared to the level observed in the absence of harvesting.

  5. Belyaev A.V.
    Stochastic transitions from order to chaos in a metapopulation model with migration
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973

    This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.

  6. Stepantsov M.Y.
    Modeling some scenarios in the “power – society” system concerning migration and changing the number of regions
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1499-1512

    The paper considers an earlier proposed by the author discrete modification of the A. P. Mikhailov “power – society” model. The modification is based on a stochastic cellular automaton, it’s microdynamics being completely different from the c continuous model based on differential equations. However, the macrodynamics of the discrete modification is shown in previous works to be equivalent to one of the continuous model. This is important, but at the same time raises the question why use the discrete model. The answer lies in its flexibility, which allows adding a variety of factors, the consideration of which in a continuous model either leads to a significant increase in computational complexity or is simply impossible.

    This paper considers several examples of such applicability expansion of the model, with the help of which a number of applied problems are solved.

    One of the modifications of the model takes into account economic ties between regions and municipalities, which could not be studied in the basic model. Computational experiments confirmed the improvement of the socio-economic indicators of the system under the influence of the ties.

    The second modification allows internal migration in the system. Using it we studied the socio-economic development of a more prosperous region that attracts migrants.

    Next we studied the dynamics of the system while the number of regions and municipalities changes. The negative impact of this process on the socio-economic indicators of the system was shown and possible control was found to overcome this negative impact.

    The results of this study, therefore, include both the solution of some applied problems and the demonstration of the broader applicability of the discrete model compared with the continuous one.

  7. Almasri A., Tsybulin V.G.
    Multistability for a mathematical model of a tritrophic system in a heterogeneous habitat
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 923-939

    We consider a spatiotemporal model of a tritrophic system describing the interaction between prey, predator, and superpredator in an environment with nonuniform resource distribution. The model incorporates superpredator omnivory (Intraguild Predation, IGP), diffusion, and directed migration (taxis), the latter modeled using a logarithmic function of resource availability and prey density. The primary focus is on analyzing the multistability of the system and the role of cosymmetry in the formation of continuous families of steady-state solutions. Using a numerical-analytical approach, we study both spatially homogeneous and inhomogeneous steady-state solutions. It is established that under additional relations between the parameters governing local predator interactions and diffusion coefficients, the system exhibits cosymmetry, leading to the emergence of a family of stable steady-state solutions proportional to the resource function. We demonstrate that the cosymmetry is independent of the resource function in the case of a heterogeneous environment. The stability of stationary distributions is investigated using spectral methods. Violation of the cosymmetry conditions results in the breakdown of the solution family and the emergence of isolated equilibria, as well as prolonged transient dynamics reflecting the system’s “memory” of the vanished states. Depending on initial conditions and parameters, the system exhibits transitions to single-predator regimes (survival of either the predator or superpredator) or predator coexistence. Numerical experiments based on the method of lines, which involves finite difference discretization in space and Runge –Kutta integration in time, confirm the system’s multistability and illustrate the disappearance of solution families when cosymmetry is broken.

  8. Ekaterinchuk E.D., Ryashko L.B.
    Analysis of stochastic attractors for time-delayed quadratic discrete model of population dynamics
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 145-157

    We consider a time-delayed quadratic discrete model of population dynamics under the influence of random perturbations. Analysis of stochastic attractors of the model is performed using the methods of direct numerical simulation and the stochastic sensitivity function technique. A deformation of the probability distribution of random states around the stable equilibria and cycles is studied parametrically. The phenomenon of noise-induced transitions in the zone of discrete cycles is demonstrated.

    Views (last year): 3. Citations: 1 (RSCI).
  9. Stepantsov M.Y.
    A discreet ‘power–society–economics’ model based on cellular automaton
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 561-572

    In this paper we consider a new modification of the discrete version of Mikhailov’s ‘power–society’ model, previously proposed by the author. This modification includes social-economical dynamics and corruption of the system similarly to continuous ‘power–society–economics–corruption’ model but is based on a stochastic cellular automaton describing the dynamics of power distribution in a hierarchy. This new version is founded on previously proposed ‘power–society’ system modeling cellular automaton, its cell state space enriched with variables corresponding to population, economic production, production assets volume and corruption level. The social-economical structure of the model is inherited from Solow and deterministic continuous ‘power–society–economics–corruption’ models. At the same time the new model is flexible, allowing to consider regional differentiation in all social and economical dynamics parameters, to use various production and demography models and to account for goods transit between the regions. A simulation system was built, including three power hierarchy levels, five regions and 100 municipalities. and a number of numerical experiments were carried out. This research yielded results showing specific changes of the dynamics in power distribution in hierarchy when corruption level increases. While corruption is zero (similar to the previous version of the model) the power distribution in hierarchy asymptotically tends to one of stationary states. If the corruption level increases substantially, volume of power in the system is subjected to irregular oscillations, and only much later tends to a stationary value. The meaning of these results can be interpreted as the fact that the stability of power hierarchy decreases when corruption level goes up.

    Views (last year): 8. Citations: 1 (RSCI).
  10. Krasnyakov I.V., Bratsun D.A., Pismen L.M.
    Mathematical modeling of carcinoma growth with a dynamic change in the phenotype of cells
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 879-902

    In this paper, we proposed a two-dimensional chemo-mechanical model of the growth of invasive carcinoma in epithelial tissue. Each cell is modeled by an elastic polygon, changing its shape and size under the influence of pressure forces acting from the tissue. The average size and shape of the cells have been calibrated on the basis of experimental data. The model allows to describe the dynamic deformations in epithelial tissue as a collective evolution of cells interacting through the exchange of mechanical and chemical signals. The general direction of tumor growth is controlled by a pre-established linear gradient of nutrient concentration. Growth and deformation of the tissue occurs due to the mechanisms of cell division and intercalation. We assume that carcinoma has a heterogeneous structure made up of cells of different phenotypes that perform various functions in the tumor. The main parameter that determines the phenotype of a cell is the degree of its adhesion to the adjacent cells. Three main phenotypes of cancer cells are distinguished: the epithelial (E) phenotype is represented by internal tumor cells, the mesenchymal (M) phenotype is represented by single cells and the intermediate phenotype is represented by the frontal tumor cells. We assume also that the phenotype of each cell under certain conditions can change dynamically due to epithelial-mesenchymal (EM) and inverse (ME) transitions. As for normal cells, we define the main E-phenotype, which is represented by ordinary cells with strong adhesion to each other. In addition, the normal cells that are adjacent to the tumor undergo a forced EM-transition and form an M-phenotype of healthy cells. Numerical simulations have shown that, depending on the values of the control parameters as well as a combination of possible phenotypes of healthy and cancer cells, the evolution of the tumor can result in a variety of cancer structures reflecting the self-organization of tumor cells of different phenotypes. We compare the structures obtained numerically with the morphological structures revealed in clinical studies of breast carcinoma: trabecular, solid, tubular, alveolar and discrete tumor structures with ameboid migration. The possible scenario of morphogenesis for each structure is discussed. We describe also the metastatic process during which a single cancer cell of ameboid phenotype moves due to intercalation in healthy epithelial tissue, then divides and undergoes a ME transition with the appearance of a secondary tumor.

    Views (last year): 46.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"