Результаты поиска по 'information systems':
Найдено статей: 80
  1. Matveev A.V.
    Modeling the kinetics of radiopharmaceuticals with iodine isotopes in nuclear medicine problems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 883-905

    Radiopharmaceuticals with iodine radioisotopes are now widely used in imaging and non-imaging methods of nuclear medicine. When evaluating the results of radionuclide studies of the structural and functional state of organs and tissues, parallel modeling of the kinetics of radiopharmaceuticals in the body plays an important role. The complexity of such modeling lies in two opposite aspects. On the one hand, excessive simplification of the anatomical and physiological characteristics of the organism when splitting it to the compartments that may result in the loss or distortion of important clinical diagnosis information, on the other – excessive, taking into account all possible interdependencies of the functioning of the organs and systems that, on the contrary, will lead to excess amount of absolutely useless for clinical interpretation of the data or the mathematical model becomes even more intractable. Our work develops a unified approach to the construction of mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Based on this approach, three- and four-compartment pharmacokinetic models were developed and corresponding calculation programs were created in the C++ programming language for processing and evaluating the results of radionuclide diagnostics and therapy. Various methods for identifying model parameters based on quantitative data from radionuclide studies of the functional state of vital organs are proposed. The results of pharmacokinetic modeling for radionuclide diagnostics of the liver, kidney, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. Using clinical and diagnostic data, individual pharmacokinetic parameters of transport of different radiopharmaceuticals in the body (transport constants, half-life periods, maximum activity in the organ and the time of its achievement) were determined. It is shown that the pharmacokinetic characteristics for each patient are strictly individual and cannot be described by averaged kinetic parameters. Within the framework of three pharmacokinetic models, “Activity–time” relationships were obtained and analyzed for different organs and tissues, including for tissues in which the activity of a radiopharmaceutical is impossible or difficult to measure by clinical methods. Also discussed are the features and the results of simulation and dosimetric planning of radioiodine therapy of the thyroid gland. It is shown that the values of absorbed radiation doses are very sensitive to the kinetic parameters of the compartment model. Therefore, special attention should be paid to obtaining accurate quantitative data from ultrasound and thyroid radiometry and identifying simulation parameters based on them. The work is based on the principles and methods of pharmacokinetics. For the numerical solution of systems of differential equations of the pharmacokinetic models we used Runge–Kutta methods and Rosenbrock method. The Hooke–Jeeves method was used to find the minimum of a function of several variables when identifying modeling parameters.

  2. Malkov S.Yu., Shpyrko O.A., Davydova O.I.
    Features of social interactions: the basic model
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1323-1335

    The paper presents the results of research on the creation of a mathematical model of moral choice based on the development of the approach proposed by V. A. Lefebvre. Unlike V. A. Lefebvre, who considered a very speculative situation of a subject’s moral choice between abstract “good” and “evil” under pressure from the outside world, taking into account the subjective perception of this pressure by the subject, our study considers a more mundane and practically significant situation. The case is considered when the subject, when making decisions, is guided by his individual perception of the outside world (which may be distorted, for example, due to external purposeful informational influence on the subject and manipulation of his consciousness), and “good” and “evil” are not abstract, but are conditioned by a value system adopted in a particular society under consideration and tied to a specific ideology/religion, which may be different for different societies.

    As a result of the conducted research, a basic mathematical model has been developed, and special cases of its application have been considered. Some patterns related to moral choice are revealed, and their formal description is given. In particular, the situation of manipulation of consciousness is considered in the language of the model, the law of reducing the “morality” of a society consisting of so-called free subjects (that is, those who strive to act in accordance with their intentions and correspond in their actions to the image of their “I”) is formulated.

  3. Dmitrienko P.V.
    Methods of evaluating the effectiveness of systems for computing resources monitoring
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 661-668

    This article discusses the contribution of computing resources monitoring system to the work of a distributed computing system. Method of evaluation of this contribution and performance monitoring system based on measures of certainty the state-controlled system is proposed. The application of this methodology in the design and development of local monitoring of the Central Information and Computing Complex, Joint Institute for Nuclear Research is listed.

    Views (last year): 2. Citations: 2 (RSCI).
  4. Guskov V.P., Gushchanskiy D.E., Kulabukhova N.V., Abrahamyan S.A., Balyan S.G., Degtyarev A.B., Bogdanov A.V.
    An interactive tool for developing distributed telemedicine systems
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 521-527

    Getting a qualified medical examination can be difficult for people in remote areas because medical staff available can either be inaccessible or it might lack expert knowledge at proper level. Telemedicine technologies can help in such situations. On one hand, such technologies allow highly qualified doctors to consult remotely, thereby increasing the quality of diagnosis and plan treatment. On the other hand, computer-aided analysis of the research results, anamnesis and information on similar cases assist medical staff in their routine activities and decision-making.

    Creating telemedicine system for a particular domain is a laborious process. It’s not sufficient to pick proper medical experts and to fill the knowledge base of the analytical module. It’s also necessary to organize the entire infrastructure of the system to meet the requirements in terms of reliability, fault tolerance, protection of personal data and so on. Tools with reusable infrastructure elements, which are common to such systems, are able to decrease the amount of work needed for the development of telemedicine systems.

    An interactive tool for creating distributed telemedicine systems is described in the article. A list of requirements for the systems is presented; structural solutions for meeting the requirements are suggested. A composition of such elements applicable for distributed systems is described in the article. A cardiac telemedicine system is described as a foundation of the tool

    Views (last year): 3. Citations: 4 (RSCI).
  5. Kamenev G.K., Kamenev I.G.
    Multicriterial metric data analysis in human capital modelling
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1223-1245

    The article describes a model of a human in the informational economy and demonstrates the multicriteria optimizational approach to the metric analysis of model-generated data. The traditional approach using the identification and study involves the model’s identification by time series and its further prediction. However, this is not possible when some variables are not explicitly observed and only some typical borders or population features are known, which is often the case in the social sciences, making some models pure theoretical. To avoid this problem, we propose a method of metric data analysis (MMDA) for identification and study of such models, based on the construction and analysis of the Kolmogorov – Shannon metric nets of the general population in a multidimensional space of social characteristics. Using this method, the coefficients of the model are identified and the features of its phase trajectories are studied. In this paper, we are describing human according to his role in information processing, considering his awareness and cognitive abilities. We construct two lifetime indices of human capital: creative individual (generalizing cognitive abilities) and productive (generalizing the amount of information mastered by a person) and formulate the problem of their multi-criteria (two-criteria) optimization taking into account life expectancy. This approach allows us to identify and economically justify the new requirements for the education system and the information environment of human existence. It is shown that the Pareto-frontier exists in the optimization problem, and its type depends on the mortality rates: at high life expectancy there is one dominant solution, while for lower life expectancy there are different types of Paretofrontier. In particular, the Pareto-principle applies to Russia: a significant increase in the creative human capital of an individual (summarizing his cognitive abilities) is possible due to a small decrease in the creative human capital (summarizing awareness). It is shown that the increase in life expectancy makes competence approach (focused on the development of cognitive abilities) being optimal, while for low life expectancy the knowledge approach is preferable.

  6. Yudin N.E., Gasnikov A.V.
    Regularization and acceleration of Gauss – Newton method
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1829-1840

    We propose a family of Gauss –Newton methods for solving optimization problems and systems of nonlinear equations based on the ideas of using the upper estimate of the norm of the residual of the system of nonlinear equations and quadratic regularization. The paper presents a development of the «Three Squares Method» scheme with the addition of a momentum term to the update rule of the sought parameters in the problem to be solved. The resulting scheme has several remarkable properties. First, the paper algorithmically describes a whole parametric family of methods that minimize functionals of a special kind: compositions of the residual of a nonlinear equation and an unimodal functional. Such a functional, entirely consistent with the «gray box» paradigm in the problem description, combines a large number of solvable problems related to applications in machine learning, with the regression problems. Secondly, the obtained family of methods is described as a generalization of several forms of the Levenberg –Marquardt algorithm, allowing implementation in non-Euclidean spaces as well. The algorithm describing the parametric family of Gauss –Newton methods uses an iterative procedure that performs an inexact parametrized proximal mapping and shift using a momentum term. The paper contains a detailed analysis of the efficiency of the proposed family of Gauss – Newton methods; the derived estimates take into account the number of external iterations of the algorithm for solving the main problem, the accuracy and computational complexity of the local model representation and oracle computation. Sublinear and linear convergence conditions based on the Polak – Lojasiewicz inequality are derived for the family of methods. In both observed convergence regimes, the Lipschitz property of the residual of the nonlinear system of equations is locally assumed. In addition to the theoretical analysis of the scheme, the paper studies the issues of its practical implementation. In particular, in the experiments conducted for the suboptimal step, the schemes of effective calculation of the approximation of the best step are given, which makes it possible to improve the convergence of the method in practice in comparison with the original «Three Square Method». The proposed scheme combines several existing and frequently used in practice modifications of the Gauss –Newton method, in addition, the paper proposes a monotone momentum modification of the family of developed methods, which does not slow down the search for a solution in the worst case and demonstrates in practice an improvement in the convergence of the method.

  7. Marosi A.C., Lovas R.
    Defining volunteer computing: a formal approach
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 565-571

    Volunteer computing resembles private desktop grids whereas desktop grids are not fully equivalent to volunteer computing. There are several attempts to distinguish and categorize them using informal and formal methods. However, most formal approaches model a particular middleware and do not focus on the general notion of volunteer or desktop grid computing. This work makes an attempt to formalize their characteristics and relationship. To this end formal modeling is applied that tries to grasp the semantic of their functionalities — as opposed to comparisons based on properties, features, etc. We apply this modeling method to formalize the Berkeley Open Infrastructure for Network Computing (BOINC) [Anderson D. P., 2004] volunteer computing system.

  8. Yuzhanin N.V., Tipikin Yu.A., Gankevich I.G., Zolotarev V.I.
    Computational task tracking complex in the scientific project informational support system
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 615-620

    This work describes the idea of the system of informational support for the scientific projects and the development of computational task tracking complex. Due to large requirements for computational experiments the problem of presentation of the information about HPC tasks becomes one of the most important. Nonstandard usage of the service desk system as a basis of the computational task tracking and support system can be the solution of this problem. Particular attention is paid to the analysis and the satisfaction of the conflicting requirements to the task tracking complex from the different user groups. Besides the web service kit used for the integration of the task tracking complex and the datacenter environment is considered. This service kit became the main interconnect between the parts of the scientific project support system and also this kit allows to reconfigure the whole system quickly and safely.

    Views (last year): 2. Citations: 1 (RSCI).
  9. Bogdanov A.V., Thurein Kyaw L.
    Query optimization in relational database systems and cloud computing technology
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 649-655

    Optimization is the heart of relational Database Management System (DMBS). Its can analyzes the SQL statements and determines the most efficient access plan to satisfy every query request. Optimization can solves this problem and analyzes SQL statements specifying which tables and columns are available. And then request the information system and statistical data stored in the system directory, to determine the best method of solving the tasks required to comply with the query requests.

    Views (last year): 1.
  10. Degtyarev A.B., Myo Min S., Wunna K.
    Cloud computing for virtual testbed
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 753-758

    Nowadays cloud computing is an important topic in the field of information technology and computer system. Several companies and educational institutes have deployed cloud infrastructures to overcome their problems such as easy data access, software updates with minimal cost, large or unlimited storage, efficient cost factor, backup storage and disaster recovery, and some other benefits if compare with the traditional network infrastructures. The paper present the study of cloud computing technology for marine environmental data and processing. Cloud computing of marine environment information is proposed for the integration and sharing of marine information resources. It is highly desirable to perform empirical requiring numerous interactions with web servers and transfers of very large archival data files without affecting operational information system infrastructure. In this paper, we consider the cloud computing for virtual testbed to minimize the cost. That is related to real time infrastructure.

    Views (last year): 7.
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"