Результаты поиска по 'positioning':
Найдено статей: 91
  1. Shirokova E.N., Sadin D.V.
    Wave and relaxation effects during the outflow of a gas suspension partially filling a cylindrical channel
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1495-1506

    The paper is devoted to the study of wave and relaxation effects during the pulsed outflow of a gas mixture with a high content of solid particles from a cylindrical channel during its initial partial filling. The problem is formulated in a two-speed two-temperature formulation and was solved numerically by the hybrid large-particle method of the second order of approximation. The numerical algorithm is implemented in the form of parallel computing using basic Free Pascal language tools. The applicability and accuracy of the method for wave flows of concentrated gas-particles mixtures is confirmed by comparison with test asymptotically accurate solutions. The calculation error on a grid of low detail in the characteristic flow zones of a two-phase medium was 10-6 . . . 10-5.

    Based on the wave diagram, the analysis of the physical pattern of the outflow of a gas suspension partially filling a cylindrical channel is performed. It is established that, depending on the degree of initial filling of the channel, various outflow modes are formed. The first mode is implemented with a small degree of loading of the high-pressure chamber, at which the left boundary of the gas-particles mixture crosses the outlet section before the arrival of the rarefaction wave reflected from the bottom of the channel. At the same time, the maximum value of the mass flow rate of the mixture is achieved. Other modes are formed in cases of a larger initial filling of the channel, when the rarefaction waves reflected from the bottom of the channel interact with the gas suspension layer and reduce the intensity of its outflow.

    The influence of relaxation properties with changing particle size on the dynamics of a limited layer of a gas-dispersed medium is studied. Comparison of the outflow of a limited gas suspension layer with different particle sizes shows that for small particles (the Stokes number is less than 0.001), an anomalous phenomenon of the simultaneous existence of shock wave structures in the supersonic and subsonic flow of gas and suspension is observed. With an increase in the size of dispersed inclusions, the compaction jumps in the region of the two-phase mixture are smoothed out, and for particles (the Stokes number is greater than 0.1), they practically disappear. At the same time, the shock-wave configuration of the supersonic gas flow at the outlet of the channel is preserved, and the positions and boundaries of the energy-carrying volumes of the gas suspension are close when the particle sizes change.

  2. Bratsun D.A., Zakharov A.P.
    Modelling spatio-temporal dynamics of circadian rythms in Neurospora crassa
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 191-213

    We derive a new model of circadian oscillations in Neurospora crassa, which is suitable to analyze both temporal and spatial dynamics of proteins responsible for mechanism of rythms. The model is based on the non-linear interplay between proteins FRQ and WCC which are products of transcription of frequency and white collar genes forming a feedback loop comprised both positive and negative elements. The main component of oscillations mechanism is supposed to be time-delay in biochemical reactions of transcription. We show that the model accounts for various features observed in Neurospora’s experiments such as entrainment by light cycles, phase shift under light pulse, robustness to action of fluctuations and so on. Wave patterns excited during spatial development of the system are studied. It is shown that the wave of synchronization of biorythms arises under basal transcription factors.

    Views (last year): 6. Citations: 20 (RSCI).
  3. Tumanyan A.G., Bartsev S.I.
    Model of formation of primary behavioral patterns with adaptive behavior based on the combination of random search and experience
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 941-950

    In this paper, we propose an adaptive algorithm that simulates the process of forming the initial behavioral skills on the example of the system ‘eye-arm’ animat. The situation is the formation of the initial behavioral skills occurs, for example, when a child masters the management of their hands by understanding the relationship between baseline unidentified spots on the retina of his eye and the position of the real object. Since the body control skills are not ‘hardcoded’ initially in the brain and the spinal cord at the level of instincts, the human child, like most young of other mammals, it is necessary to develop these skills in search behavior mode. Exploratory behavior begins with trial and error and then its contribution is gradually reduced as the development of the body and its environment. Since the correct behavior patterns at this stage of development of the organism does not exist for now, then the only way to select the right skills is a positive reinforcement to achieve the objective. A key feature of the proposed algorithm is to fix in the imprinting mode, only the final action that led to success, and that is very important, led to the familiar imprinted situation clearly leads to success. Over time, the continuous chain is lengthened right action — maximum use of previous positive experiences and negative ‘forgotten’ and not used.

    Thus there is the gradual replacement of the random search purposeful actions that observed in the real young. Thus, the algorithm is able to establish a correspondence between the laws of the world and the ‘inner feelings’, the internal state of the animat. The proposed animat model was used 2 types of neural networks: 1) neural network NET1 to the input current which is fed to the position of the brush arms and the target point, and the output of motor commands, directing ‘brush’ manipulator animat to the target point; 2) neural network NET2 is received at the input of target coordinates and the current coordinates of the ‘brush’ and the output value is formed likelihood that the animat already ‘know’ this situation, and he ‘knows’ how to react to it. With this architecture at the animat has to rely on the ‘experience’ of neural networks to recognize situations where the response from NET2 network of close to 1, and on the other hand, run a random search, when the experience of functioning in this area of the visual field in animat not (response NET2 close to 0).

    Views (last year): 6. Citations: 2 (RSCI).
  4. Madera A.G.
    Modeling thermal feedback effect on thermal processes in electronic systems
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 483-494

    The article is devoted to the effect of thermal feedback, which occurs during the operation of integrated circuits and electronic systems with their use. Thermal feedback is due to the fact that the power consumed by the functioning of the microchip heats it and, due to the significant dependence of its electrical parameters on temperature, interactive interaction arises between its electrical and thermal processes. The effect of thermal feedback leads to a change in both electrical parameters and temperature levels in microcircuits. Positive thermal feedback is an undesirable phenomenon, because it causes the output of the electrical parameters of the microcircuits beyond the permissible values, the reduction in reliability and, in some cases, burn out. Negative thermal feedback is manifested in stabilizing the electrical and thermal regimes at lower temperature levels. Therefore, when designing microcircuits and electronic systems with their application, it is necessary to achieve the implementation of negative feedback. In this paper, we propose a method for modeling of thermal modes in electronic systems, taking into account the effect of thermal feedback. The method is based on introducing into the thermal model of the electronic system new model circuit elements that are nonlinearly dependent on temperature, the number of which is equal to the number of microcircuits in the electronic system. This approach makes it possible to apply matrix-topological equations of thermal processes to the thermal model with new circuit elements introduced into it and incorporate them into existing thermal design software packages. An example of modeling a thermal process in a real electronic system is presented, taking into account the effect of thermal feedback on the example of a microcircuit installed on a printed circuit board. It is shown that in order to adequately model the electrical and thermal processes of microcircuits and electronic systems, it is necessary to take into account the effects of thermal feedback in order to avoid design errors and create competitive electronic systems.

    Views (last year): 22. Citations: 3 (RSCI).
  5. Anh N.D., Hai P.H., Hanh N.T., Vinh N.Q.
    The dynamic model of a high-rise firefighting drone
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 115-126

    The utilization of unmanned aerial vehicles (UAVs) in high-rise firefighting operations is the right solution for reaching the fire scene on high floors quickly and effectively. The article proposes a quadrotor-type firefighting UAV model carrying a launcher to launch a missile containing fire extinguishing powders into a fire. The kinematic model describing the flight kinematics of this UAV model is built based on the Newton – Euler method when the device is in normal motion and at the time of launching a firefighting missile. The results from the simulation testing the validity of the kinematic model and the simulation of the motion of the UAV show that the variation of Euler angles, flight angles, and aerodynamic angles during a flight are within an acceptable range and overload guarantee in flight. The UAV flew to the correct position to launch the required fire-extinguishing ammunition. The results of the research are the basis for building a control system of high-rise firefighting drones in Vietnam.

  6. Leon C., Tokarev A.A., Volpert V.A.
    Modelling of cytokine storm in respiratory viral infections
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 619-645

    In this work, we develop a model of the immune response to respiratory viral infections taking into account some particular properties of the SARS-CoV-2 infection. The model represents a system of ordinary differential equations for the concentrations of epithelial cells, immune cells, virus and inflammatory cytokines. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study dynamics of solutions. Behavior of solutions is characterized by large peaks of virus concentration specific for acute respiratory viral infections.

    At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. On the other hand, viral infection down-regulates interferon production. Their competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. In the case of infection outbreak, the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, increase of the initial viral load leads to shorter incubation period and higher maximal viral load.

    In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by excessive production of proinflammatory cytokines. Furthermore, inflammatory cell death can stimulate transition to cytokine storm. However, it cannot sustain it by itself without the innate immune response. Assumptions of the model and obtained results are in qualitative agreement with the experimental and clinical data.

  7. Gerasimov A.N., Shpitonkov M.I.
    Mathematical model of the parasite – host system with distributed immunity retention time
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 695-711

    The COVID-19 pandemic has caused increased interest in mathematical models of the epidemic process, since only statistical analysis of morbidity does not allow medium-term forecasting in a rapidly changing situation.

    Among the specific features of COVID-19 that need to be taken into account in mathematical models are the heterogeneity of the pathogen, repeated changes in the dominant variant of SARS-CoV-2, and the relative short duration of post-infectious immunity.

    In this regard, solutions to a system of differential equations for a SIR class model with a heterogeneous duration of post-infectious immunity were analytically studied, and numerical calculations were carried out for the dynamics of the system with an average duration of post-infectious immunity of the order of a year.

    For a SIR class model with a heterogeneous duration of post-infectious immunity, it was proven that any solution can be continued indefinitely in time in a positive direction without leaving the domain of definition of the system.

    For the contact number $R_0 \leqslant 1$, all solutions tend to a single trivial stationary solution with a zero share of infected people, and for $R_0 > 1$, in addition to the trivial solution, there is also a non-trivial stationary solution with non-zero shares of infected and susceptible people. The existence and uniqueness of a non-trivial stationary solution for $R_0 > 1$ was proven, and it was also proven that it is a global attractor.

    Also, for several variants of heterogeneity, the eigenvalues of the rate of exponential convergence of small deviations from a nontrivial stationary solution were calculated.

    It was found that for contact number values corresponding to COVID-19, the phase trajectory has the form of a twisting spiral with a period length of the order of a year.

    This corresponds to the real dynamics of the incidence of COVID-19, in which, after several months of increasing incidence, a period of falling begins. At the same time, a second wave of incidence of a smaller amplitude, as predicted by the model, was not observed, since during 2020–2023, approximately every six months, a new variant of SARS-CoV-2 appeared, which was more infectious than the previous one, as a result of which the new variant replaced the previous one and became dominant.

  8. Petrov I.B., Konov D.S., Vasyukov A.V., Muratov M.V.
    Detecting large fractures in geological media using convolutional neural networks
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 889-901

    This paper considers the inverse problem of seismic exploration — determining the structure of the media based on the recorded wave response from it. Large cracks are considered as target objects, whose size and position are to be determined.

    he direct problem is solved using the grid-characteristic method. The method allows using physically based algorithms for calculating outer boundaries of the region and contact boundaries inside the region. The crack is assumed to be thin, a special condition on the crack borders is used to describe the crack.

    The inverse problem is solved using convolutional neural networks. The input data of the neural network are seismograms interpreted as images. The output data are masks describing the medium on a structured grid. Each element of such a grid belongs to one of two classes — either an element of a continuous geological massif, or an element through which a crack passes. This approach allows us to consider a medium with an unknown number of cracks.

    The neural network is trained using only samples with one crack. The final testing of the trained network is performed using additional samples with several cracks. These samples are not involved in the training process. The purpose of testing under such conditions is to verify that the trained network has sufficient generality, recognizes signs of a crack in the signal, and does not suffer from overtraining on samples with a single crack in the media.

    The paper shows that a convolutional network trained on samples with a single crack can be used to process data with multiple cracks. The networks detects fairly small cracks at great depths if they are sufficiently spatially separated from each other. In this case their wave responses are clearly distinguishable on the seismogram and can be interpreted by the neural network. If the cracks are close to each other, artifacts and interpretation errors may occur. This is due to the fact that on the seismogram the wave responses of close cracks merge. This cause the network to interpret several cracks located nearby as one. It should be noted that a similar error would most likely be made by a human during manual interpretation of the data. The paper provides examples of some such artifacts, distortions and recognition errors.

  9. Gorelova A.Y., Stiazhin V.N., Kristal M.G.
    Computer Simulation of the Acceleration of the Gyroscopic Device for Boring Head’s Position Stabilization
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 569-575

    Given paper covers the structure of the introduced device stabilizing the boring tool. The computer model of the hydrojet gyroscopic device is described; problem definition and the results of simulation are given.

    Views (last year): 1. Citations: 1 (RSCI).
  10. Kalmykov L.V., Kalmykov V.L.
    Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293

    Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.

    Views (last year): 16. Citations: 3 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"