Результаты поиска по 'problem of time':
Найдено статей: 210
  1. Sviridenko A.B.
    The iterations’ number estimation for strongly polynomial linear programming algorithms
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 249-285

    A direct algorithm for solving a linear programming problem (LP), given in canonical form, is considered. The algorithm consists of two successive stages, in which the following LP problems are solved by a direct method: a non-degenerate auxiliary problem at the first stage and some problem equivalent to the original one at the second. The construction of the auxiliary problem is based on a multiplicative version of the Gaussian exclusion method, in the very structure of which there are possibilities: identification of incompatibility and linear dependence of constraints; identification of variables whose optimal values are obviously zero; the actual exclusion of direct variables and the reduction of the dimension of the space in which the solution of the original problem is determined. In the process of actual exclusion of variables, the algorithm generates a sequence of multipliers, the main rows of which form a matrix of constraints of the auxiliary problem, and the possibility of minimizing the filling of the main rows of multipliers is inherent in the very structure of direct methods. At the same time, there is no need to transfer information (basis, plan and optimal value of the objective function) to the second stage of the algorithm and apply one of the ways to eliminate looping to guarantee final convergence.

    Two variants of the algorithm for solving the auxiliary problem in conjugate canonical form are presented. The first one is based on its solution by a direct algorithm in terms of the simplex method, and the second one is based on solving a problem dual to it by the simplex method. It is shown that both variants of the algorithm for the same initial data (inputs) generate the same sequence of points: the basic solution and the current dual solution of the vector of row estimates. Hence, it is concluded that the direct algorithm is an algorithm of the simplex method type. It is also shown that the comparison of numerical schemes leads to the conclusion that the direct algorithm allows to reduce, according to the cubic law, the number of arithmetic operations necessary to solve the auxiliary problem, compared with the simplex method. An estimate of the number of iterations is given.

  2. Goguev M.V., Kislitsyn A.A.
    Modeling time series trajectories using the Liouville equation
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 585-598

    This paper presents algorithm for modeling set of trajectories of non-stationary time series, based on a numerical scheme for approximating the sample density of the distribution function in a problem with fixed ends, when the initial distribution for a given number of steps transforms into a certain final distribution, so that at each step the semigroup property of solving the Liouville equation is satisfied. The model makes it possible to numerically construct evolving densities of distribution functions during random switching of states of the system generating the original time series.

    The main problem is related to the fact that with the numerical implementation of the left-hand differential derivative in time, the solution becomes unstable, but such approach corresponds to the modeling of evolution. An integrative approach is used while choosing implicit stable schemes with “going into the future”, this does not match the semigroup property at each step. If, on the other hand, some real process is being modeled, in which goal-setting presumably takes place, then it is desirable to use schemes that generate a model of the transition process. Such model is used in the future in order to build a predictor of the disorder, which will allow you to determine exactly what state the process under study is going into, before the process really went into it. The model described in the article can be used as a tool for modeling real non-stationary time series.

    Steps of the modeling scheme are described further. Fragments corresponding to certain states are selected from a given time series, for example, trends with specified slope angles and variances. Reference distributions of states are compiled from these fragments. Then the empirical distributions of the duration of the system’s stay in the specified states and the duration of the transition time from state to state are determined. In accordance with these empirical distributions, a probabilistic model of the disorder is constructed and the corresponding trajectories of the time series are modeled.

  3. In recent years, the use of neural network models for solving aerodynamics problems has become widespread. These models, trained on a set of previously obtained solutions, predict solutions to new problems. They are, in essence, interpolation algorithms. An alternative approach is to construct a neural network operator. This is a neural network that reproduces a numerical method used to solve a problem. It allows to find the solution in iterations. The paper considers the construction of such an operator using the UNet neural network with a spatial attention mechanism. It solves flow problems on a rectangular uniform grid that is common to a streamlined body and flow field. A correction mechanism is proposed to clarify the obtained solution. The problem of the stability of such an algorithm for solving a stationary problem is analyzed, and a comparison is made with other variants of its construction, including pushforward trick and positional encoding. The issue of selecting a set of iterations for forming a train dataset is considered, and the behavior of the solution is assessed using repeated use of a neural network operator.

    A demonstration of the method is provided for the case of flow around a rounded plate with a turbulent flow, with various options for rounding, for fixed parameters of the incoming flow, with Reynolds number $\text{Re} = 10^5$ and Mach number $M = 0.15$. Since flows with these parameters of the incoming flow can be considered incompressible, only velocity components are directly studied. At the same time, the neural network model used to construct the operator has a common decoder for both velocity components. Comparison of flow fields and velocity profiles along the normal and outline of the body, obtained using a neural network operator and numerical methods, is carried out. Analysis is performed both on the plate and rounding. Simulation results confirm that the neural network operator allows finding a solution with high accuracy and stability.

  4. The paper considers the problem of parameter identification of discrete-time linear stochastic systems in the state space with additive and multiplicative noise. It is assumed that the state and measurements equations of a discrete-time linear stochastic system depend on an unknown parameter to be identified.

    A new approach to the construction of gradient parameter identification methods in the class of discrete-time linear stochastic systems with additive and multiplicative noise is presented, based on the application of modified weighted Gram – Schmidt orthogonalization (MWGS) and the discrete-time information-type filtering algorithms.

    The main theoretical results of this research include: 1) a new identification criterion in terms of an extended information filter; 2) a new algorithm for calculating derivatives with respect to an uncertainty parameter in a discrete-time linear stochastic system based on an extended information LD filter using the direct procedure of modified weighted Gram – Schmidt orthogonalization; and 3) a new method for calculating the gradient of identification criteria using a “differentiated” extended information LD filter.

    The advantages of this approach are that it uses MWGS orthogonalization which is numerically stable against machine roundoff errors, and it forms the basis of all the developed methods and algorithms. The information LD-filter maintains the symmetry and positive definiteness of the information matrices. The algorithms have an array structure that is convenient for computer implementation.

    All the developed algorithms were implemented in MATLAB. A series of numerical experiments were carried out. The results obtained demonstrated the operability of the proposed approach, using the example of solving the problem of parameter identification for a mathematical model of a complex mechanical system.

    The results can be used to develop methods for identifying parameters in mathematical models that are represented in state space by discrete-time linear stochastic systems with additive and multiplicative noise.

  5. Zhуkharevуch V.V., Shumуlyak L.M., Strutinskaja L.T., Ostapov S.E.
    Construction and investigation of continuous cellular automatа model of heat conductivity processes with first order phase transitions
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 141-152

    The process of heat conduction, accompanied by the first order phase transitions is discussed in this article. Using cellular automates simulation was investigated class of problems that have broad application in practice. In this paper we calculate the temperature distribution in the depth of the soil at different times for a problem of freezing of moist soil. Another task — zone growing — has been modeled by cellular automates too. The coincidence of real and modeling parameters of the system confirms the feasibility of using the selected method of modeling of physical processes.

    Views (last year): 2. Citations: 2 (RSCI).
  6. Matyushkin I.V.
    Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 1
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 167-186

    The paper has methodical character; it is devoted to three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Special attention was payed to the matter conservation law and the offensive effect of excessive hexagonal symmetry.

    It has been shown that in contrary to finite-difference approach, in spite of terminological equivalence of CA local transition function to the pattern of computing double layer explicit method, CA approach contains the replacement of matrix technique by iterative ones (for instance, sweep method for three diagonal matrixes). This suggests that discretization of boundary conditions for CA-cells needs more rigid conditions.

    The correct local transition function (LTF) of the boundary cells, which is valid at least for the boundaries of the rectangular and circular shapes have been firstly proposed and empirically given for the hexagonal grid and the conservative boundary conditions. The idea of LTF separation into «internal», «boundary» and «postfix» have been proposed. By the example of this problem the value of the Courant-Levy constant was re-evaluated as the CA convergence speed ratio to the solution, which is given at a fixed time, and to the rate of the solution change over time.

    Views (last year): 6.
  7. Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Newton methods
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703

    We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.

    In this paper, this algorithm is the basis for solving the following problems:

    Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.

    Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.

    Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.

    Views (last year): 7. Citations: 1 (RSCI).
  8. Kulikov Y.M., Son E.E.
    CABARET scheme implementation for free shear layer modeling
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903

    In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.

    The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods

    Views (last year): 17.
  9. Lobanov A.I.
    Finite difference schemes for linear advection equation solving under generalized approximation condition
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 181-193

    A set of implicit difference schemes on the five-pointwise stensil is under construction. The analysis of properties of difference schemes is carried out in a space of undetermined coefficients. The spaces were introduced for the first time by A. S. Kholodov. Usually for properties of difference schemes investigation the problem of the linear programming was constructed. The coefficient at the main term of a discrepancy was considered as the target function. The optimization task with inequalities type restrictions was considered for construction of the monotonic difference schemes. The limitation of such an approach becomes clear taking into account that approximation of the difference scheme is defined only on the classical (smooth) solutions of partial differential equations.

    The functional which minimum will be found put in compliance to the difference scheme. The functional must be the linear on the difference schemes coefficients. It is possible that the functional depends on net function – the solution of a difference task or a grid projection of the differential problem solution. If the initial terms of the functional expansion in a Taylor series on grid parameters are equal to conditions of classical approximation, we will call that the functional will be the generalized condition of approximation. It is shown that such functionals exist. For the simple linear partial differential equation with constant coefficients construction of the functional is possible also for the generalized (non-smooth) solution of a differential problem.

    Families of functionals both for smooth solutions of an initial differential problem and for the generalized solution are constructed. The new difference schemes based on the analysis of the functionals by linear programming methods are constructed. At the same time the research of couple of self-dual problems of the linear programming is used. The optimum monotonic difference scheme possessing the first order of approximation on the smooth solution of differential problem is found. The possibility of application of the new schemes for creation of hybrid difference methods of the raised approximation order on smooth solutions is discussed.

    The example of numerical implementation of the simplest difference scheme with the generalized approximation is given.

    Views (last year): 27.
  10. Shaklein A.A., Karpov A.I., Bolkisev A.A.
    Analysis of a numerical method for studying upward flame spread over solid material
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 755-774

    Reduction of the fire hazard of polymeric materials is one of the important scientific and technical problems. Since complexity of experimental procedures associated with flame spread, establishing reacting flows theoretical basics turned out to be crucial field of modern fundamental science. In order to determine parameters of flame spread over solid combustible materials numerical modelling methods have to be improved. Large amount of physical and chemical processes taking place needed to be resolved not just separately one by one but in connection with each other in gas and solid phases.

    Upward flame spread over vertical solid combustible material is followed by unsteady eddy structures of gas flow in the vicinity of flame zone caused by thermal instability and natural convection forces accelerating hot combustion products. At every moment different amount of heat energy is transferred from hot gas-phase flame to solid material because of eddy flow structures. Therefore, satisfactory heat flux and eddy flow modelling are important to estimate flame spread rate.

    In the current study we evaluated parameters of numerical method for flame spread over solid combustible material problem taking into account coupled nature of complex interaction between gas phase, solid material and eddy flow resulted from natural convection. We studied aspects of different approximation schemes used in differential equations integration process over space and time, of fields relaxation during iterations procedure carried out inside time step, of different time step values.

    Mathematical model formulated allows to simulate flame spread over solid combustible material. Fluid dynamics is modeled by Navier – Stokes system of equations, eddy flow is described by combined turbulent model RANS–LES (DDES), turbulent combustion is resolved by modified turbulent combustion model Eddy Break-Up taking into account kinetic effects, radiation transfer is modeled by spherical harmonics method of first order approximation (P1). The equations presented are solved in OpenFOAM software.

    Views (last year): 33.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"