All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Development, calibration and verification of mathematical model for multilane urban road traffic flow. Part II
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1205-1219Views (last year): 3.The goal of this work is to generalize second order mathematical models for automotive flow using algorithm for building state equation — the dependency of pressure on traffic density — which is adequate with regard to real world data. The form of state equation, which closes the system of model equations, is obtained from experimental form of fundamental diagram — the dependency of traffic flow intensity on its density, and completely defines all properties of any phenomenological model. The proposed approach was verified using numerical experiments on typical traffic data, obtained from PeMS system (http://pems.dot.ca.gov/), using segment of I-507 highway in California, USA as model system.
-
Numerical simulation of converging spherical shock waves with symmetry violation
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 59-71The study of the development of π-periodic perturbations of a converging spherical shock wave leading to cumulation limitation is performed. The study is based on 3D hydrodynamic calculations with the Carnahan – Starling equation of state for hard sphere fluid. The method of solving the Euler equations on moving (compressing) grids allows one to trace the evolution of the converging shock wave front with high accuracy in a wide range of its radius. The compression rate of the computational grid is adapted to the motion of the shock wave front, while the motion of the boundaries of the computational domain satisfy the condition of its supersonic velocity relative to the medium. This leads to the fact that the solution is determined only by the initial data at the grid compression stage. The second order TVD scheme is used to reconstruct the vector of conservative variables at the boundaries of the computational cells in combination with the Rusanov scheme for calculating the numerical vector of flows. The choice is due to a strong tendency for the manifestation of carbuncle-type numerical instability in the calculations, which is known for other classes of flows. In the three-dimensional case of the observed force, the carbuncle effect was obtained for the first time, which is explained by the specific nature of the flow: the concavity of the shock wave front in the direction of motion, the unlimited (in the symmetric case) growth of the Mach number, and the stationarity of the front on the computational grid. The applied numerical method made it possible to study the detailed flow pattern on the scale of cumulation termination, which is impossible within the framework of the Whitham method of geometric shock wave dynamics, which was previously used to calculate converging shock waves. The study showed that the limitation of cumulation is associated with the transition from the Mach interaction of converging shock wave segments to a regular one due to the progressive increase in the ratio of the azimuthal velocity at the shock wave front to the radial velocity with a decrease in its radius. It was found that this ratio is represented as a product of a limited oscillating function of the radius and a power function of the radius with an exponent depending on the initial packing density in the hard sphere model. It is shown that increasing the packing density parameter in the hard sphere model leads to a significant increase in the pressures achieved in a shock wave with broken symmetry. For the first time in the calculation, it is shown that at the scale of cumulation termination, the flow is accompanied by the formation of high-energy vortices, which involve the substance that has undergone the greatest shock-wave compression. Influencing heat and mass transfer in the region of greatest compression, this circumstance is important for current practical applications of converging shock waves for the purpose of initiating reactions (detonation, phase transitions, controlled thermonuclear fusion).
-
Optimization of a hull form for decrease ship resistance to movement
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 57-65Views (last year): 10. Citations: 1 (RSCI).Optimization of hull lines for the minimum resistance to movement is a problem of current interest in ship hydrodynamics. In practice, lines design is still to some extent an art. The usual approaches to decrease the ship resistance are based on the model experiment and/or CFD simulation, following the trial and error method. The paper presents a new method of in-detail hull form design based on the wave-based optimization approach. The method provides systematic variation of the hull geometrical form, which corresponds to alteration of longitudinal distribution of the hull volume, while its vertical volume distribution is fixed or highly controlled. It’s well known from the theoretical studies that the vertical distribution can't be optimized by condition of minimum wave resistance, thus it can be neglected for the optimization procedures. The method efficiency was investigated by application to the foreship of KCS, the well-known test object from the workshop Gothenburg-2000. The variations of the longitudinal distribution of the volume were set on the sectional area curve as finite volume increments and then transferred to the lines plan with the help of special frame transformation methods. The CFD towing simulations were carried out for the initial hull form and the six modified variants. According to the simulation results, examined modifications caused the resistance increments in the range 1.3–6.5 %. Optimization process was underpinned with the respective data analysis based on the new hypothesis, according to which, the resistance increments caused by separate longitudinal segments of hull form meet the principle of superposition. The achieved results, which are presented as the optimum distribution of volume present in the optimized designed hull form, which shows the interesting characteristics that its resistance has decrease by 8.9 % in respect to initial KCS hull form. Visualization of the wave patterns showed an attenuation of the transversal wave components, and the intensification of the diverging wave components.
-
Molecular dynamics assessment of the mechanical properties of fibrillar actin
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1081-1092Actin is a conserved structural protein that is expressed in all eukaryotic cells. When polymerized, it forms long filaments of fibrillar actin, or F-actin, which are involved in the formation of the cytoskeleton, in muscle contraction and its regulation, and in many other processes. The dynamic and mechanical properties of actin are important for interaction with other proteins and the realization of its numerous functions in the cell. We performed 204.8 ns long molecular dynamics (MD) simulations of an actin filament segment consisting of 24 monomers in the absence and the presence of MgADP at 300 K in the presence of a solvent and at physiological ionic strength using the AMBER99SBILDN and CHARMM36 force fields in the GROMACS software environment, using modern structural models as the initial structure obtained by high-resolution cryoelectron microscopy. MD calculations have shown that the stationary regime of fluctuations in the structure of the F-actin long segment is developed 80–100 ns after the start of the MD trajectory. Based on the results of MD calculations, the main parameters of the actin helix and its bending, longitudinal, and torsional stiffness were estimated using a section of the calculation model that is far enough away from its ends. The estimated subunit axial (2.72–2.75 nm) and angular (165–168◦) translation of the F-actin helix, its bending (2.8–4.7 · 10−26 N·m2), longitudinal (36–47·10−9 N), and torsional (2.6–3.1·10−26 N·m2) stiffness are in good agreement with the results of the most reliable experiments. The results of MD calculations have shown that modern structural models of F-actin make it possible to accurately describe its dynamics and mechanical properties, provided that computational models contain a sufficiently large number of monomers, modern force fields, and relatively long MD trajectories are used. The inclusion of actin partner proteins, in particular, tropomyosin and troponin, in the MD model can help to understand the molecular mechanisms of such important processes as the regulation of muscle contraction.
-
Computer aided analysis of medical image recognition for example of scintigraphy
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 541-548Views (last year): 3. Citations: 3 (RSCI).The practical application of nuclear medicine demonstrates the continued information deficiency of the algorithms and programs that provide visualization and analysis of medical images. The aim of the study was to determine the principles of optimizing the processing of planar osteostsintigraphy on the basis of сomputer aided diagnosis (CAD) for analysis of texture descriptions of images of metastatic zones on planar scintigrams of skeleton. A computer-aided diagnosis system for analysis of skeletal metastases based on planar scintigraphy data has been developed. This system includes skeleton image segmentation, calculation of textural, histogram and morphometrical parameters and the creation of a training set. For study of metastatic images’ textural characteristics on planar scintigrams of skeleton was developed the computer program of automatic analysis of skeletal metastases is used from data of planar scintigraphy. Also expert evaluation was used to distinguishing ‘pathological’ (metastatic) from ‘physiological’ (non-metastatic) radiopharmaceutical hyperfixation zones in which Haralick’s textural features were determined: autocorrelation, contrast, ‘forth moment’ and heterogeneity. This program was established on the principles of сomputer aided diagnosis researches planar scintigrams of skeletal patients with metastatic breast cancer hearths hyperfixation of radiopharmaceuticals were identified. Calculated parameters were made such as brightness, smoothness, the third moment of brightness, brightness uniformity, entropy brightness. It has been established that in most areas of the skeleton of histogram values of parameters in pathologic hyperfixation of radiopharmaceuticals predominate over the same values in the physiological. Most often pathological hyperfixation of radiopharmaceuticals as the front and rear fixed scintigramms prevalence of brightness and smoothness of the image brightness in comparison with those of the physiological hyperfixation of radiopharmaceuticals. Separate figures histogram analysis can be used in specifying the diagnosis of metastases in the mathematical modeling and interpretation bone scintigraphy. Separate figures histogram analysis can be used in specifying the diagnosis of metastases in the mathematical modeling and interpretation bone scintigraphy.
-
Proof of the connection between the Backman model with degenerate cost functions and the model of stable dynamics
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 335-342Since 1950s the field of city transport modelling has progressed rapidly. The first equilibrium distribution models of traffic flow appeared. The most popular model (which is still being widely used) was the Beckmann model, based on the two Wardrop principles. The core of the model could be briefly described as the search for the Nash equilibrium in a population demand game, in which losses of agents (drivers) are calculated based on the chosen path and demands of this path with correspondences being fixed. The demands (costs) of a path are calculated as the sum of the demands of different path segments (graph edges), that are included in the path. The costs of an edge (edge travel time) are determined by the amount of traffic on this edge (more traffic means larger travel time). The flow on a graph edge is determined by the sum of flows over all paths passing through the given edge. Thus, the cost of traveling along a path is determined not only by the choice of the path, but also by the paths other drivers have chosen. Thus, it is a standard game theory task. The way cost functions are constructed allows us to narrow the search for equilibrium to solving an optimization problem (game is potential in this case). If the cost functions are monotone and non-decreasing, the optimization problem is convex. Actually, different assumptions about the cost functions form different models. The most popular model is based on the BPR cost function. Such functions are massively used in calculations of real cities. However, in the beginning of the XXI century, Yu. E. Nesterov and A. de Palma showed that Beckmann-type models have serious weak points. Those could be fixed using the stable dynamics model, as it was called by the authors. The search for equilibrium here could be also reduced to an optimization problem, moreover, the problem of linear programming. In 2013, A.V.Gasnikov discovered that the stable dynamics model can be obtained by a passage to the limit in the Beckmann model. However, it was made only for several practically important, but still special cases. Generally, the question if this passage to the limit is possible remains open. In this paper, we provide the justification of the possibility of the above-mentioned passage to the limit in the general case, when the cost function for traveling along the edge as a function of the flow along the edge degenerates into a function equal to fixed costs until the capacity is reached and it is equal to plus infinity when the capacity is exceeded.
-
The analysis of images in control systems of unmanned automobiles on the base of energy features model
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 369-376Views (last year): 31. Citations: 1 (RSCI).The article shows the relevance of research work in the field of creating control systems for unmanned vehicles based on computer vision technologies. Computer vision tools are used to solve a large number of different tasks, including to determine the location of the car, detect obstacles, determine a suitable parking space. These tasks are resource intensive and have to be performed in real time. Therefore, it is important to develop effective models, methods and tools that ensure the achievement of the required time and accuracy for use in unmanned vehicle control systems. In this case, the choice of the image representation model is important. In this paper, we consider a model based on the wavelet transform, which makes it possible to form features characterizing the energy estimates of the image points and reflecting their significance from the point of view of the contribution to the overall image energy. To form a model of energy characteristics, a procedure is performed based on taking into account the dependencies between the wavelet coefficients of various levels and the application of heuristic adjustment factors for strengthening or weakening the influence of boundary and interior points. On the basis of the proposed model, it is possible to construct descriptions of images their characteristic features for isolating and analyzing, including for isolating contours, regions, and singular points. The effectiveness of the proposed approach to image analysis is due to the fact that the objects in question, such as road signs, road markings or car numbers that need to be detected and identified, are characterized by the relevant features. In addition, the use of wavelet transforms allows to perform the same basic operations to solve a set of tasks in onboard unmanned vehicle systems, including for tasks of primary processing, segmentation, description, recognition and compression of images. The such unified approach application will allow to reduce the time for performing all procedures and to reduce the requirements for computing resources of the on-board system of an unmanned vehicle.
-
Impact of the non-market advantage on equilibrium in A Hotelling model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 573-581The principle of minimal differentiation, based on the Hotelling model, is well known in the economy. It is applicable to horizontal differentiated goods of almost any nature. The Hotelling approach to modeling competition of oligopolies corresponds to a modern description of monopolistic competition with increasing returns to scale and imperfect competition. We develop a modification of the Hotelling model that endows a firm with a non-market advantage, which is introduced alike the valence advantage known in problems of political economy. The nonmarket (valence) advantage can be interpreted as advertisement (brand awareness of firms). Problem statement. Consider two firms competing with prices and location. Homogeneous consumers vary with its location on a segment. They minimize their costs, which additively includes the price of the product and the distance from them to the product. The utility function is linear with respect to the price and quadratic with respect to the distance. It is also expected that one of the firms (for certainty, firm № 1) has a market advantage d. The consumers are assumed to take into account the sum of the distance to the product and the market advantage of firm 1. Thus, the strategy of the firms and the consumers depend on two parameters: the unit t of the transport costs and the non-market advantage d. I explore characteristics of the equilibrium in the model as a function of the non-market advantage for different fixed t. The aim of the research is to assess the impact of the non-market advantage on the equlibrium. We prove that the Nash equilibrium exists and it is unique under additive consumers' preferences de-pending on the square of the distance between consumers and firms. This equilibrium is ‘richer’ than that in the original Hotelling model. In particular, non-market advantage can be excessive and inefficient to use.
-
A framework for medical image segmentation based on measuring diversity of pixel’s intensity utilizing interval approach
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1059-1066Segmentation of medical image is one of the most challenging tasks in analysis of medical image. It classifies the organs pixels or lesions from medical images background like MRI or CT scans, that is to provide critical information about the human organ’s volumes and shapes. In scientific imaging field, medical imaging is considered one of the most important topics due to the rapid and continuing progress in computerized medical image visualization, advances in analysis approaches and computer-aided diagnosis. Digital image processing becomes more important in healthcare field due to the growing use of direct digital imaging systems for medical diagnostics. Due to medical imaging techniques, approaches of image processing are now applicable in medicine. Generally, various transformations will be needed to extract image data. Also, a digital image can be considered an approximation of a real situation includes some uncertainty derived from the constraints on the process of vision. Since information on the level of uncertainty will influence an expert’s attitude. To address this challenge, we propose novel framework involving interval concept that consider a good tool for dealing with the uncertainty, In the proposed approach, the medical images are transformed into interval valued representation approach and entropies are defined for an image object and background. Then we determine a threshold for lower-bound image and for upper-bound image, and then calculate the mean value for the final output results. To demonstrate the effectiveness of the proposed framework, we evaluate it by using synthetic image and its ground truth. Experimental results showed how performance of the segmentation-based entropy threshold can be enhanced using proposed approach to overcome ambiguity.
-
Classification of pest-damaged coniferous trees in unmanned aerial vehicles images using convolutional neural network models
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1271-1294This article considers the task of multiclass classification of coniferous trees with varying degrees of damage by insect pests on images obtained using unmanned aerial vehicles (UAVs). We propose the use of convolutional neural networks (CNNs) for the classification of fir trees Abies sibirica and Siberian pine trees Pinus sibirica in unmanned aerial vehicles (UAV) imagery. In our approach, we develop three CNN models based on the classical U-Net architecture, designed for pixel-wise classification of images (semantic segmentation). The first model, Mo-U-Net, incorporates several changes to the classical U-Net model. The second and third models, MSC-U-Net and MSC-Res-U-Net, respectively, form ensembles of three Mo-U-Net models, each varying in depth and input image sizes. Additionally, the MSC-Res-U-Net model includes the integration of residual blocks. To validate our approach, we have created two datasets of UAV images depicting trees affected by pests, specifically Abies sibirica and Pinus sibirica, and trained the proposed three CNN models utilizing mIoULoss and Focal Loss as loss functions. Subsequent evaluation focused on the effectiveness of each trained model in classifying damaged trees. The results obtained indicate that when mIoULoss served as the loss function, the proposed models fell short of practical applicability in the forestry industry, failing to achieve classification accuracy above the threshold value of 0.5 for individual classes of both tree species according to the IoU metric. However, under Focal Loss, the MSC-Res-U-Net and Mo-U-Net models, in contrast to the third proposed model MSC-U-Net, exhibited high classification accuracy (surpassing the threshold value of 0.5) for all classes of Abies sibirica and Pinus sibirica trees. Thus, these results underscore the practical significance of the MSC-Res-U-Net and Mo-U-Net models for forestry professionals, enabling accurate classification and early detection of pest outbreaks in coniferous trees.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"