Результаты поиска по 'instability':
Найдено статей: 33
  1. Potapov I.I., Silakova Y.G.
    Investigation of the process of growth of the amplitude of bed waves in rivers and channels
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1339-1347

    The work is a theoretical study of the development of bottom instability in rivers and canals. Based on an analytical model of the load of sediment, taking into account the influence of slopes of the bottom surface, bottom pressure and shear stress on the movement of the bottom material and an analytical solution that allows to determine bottom tangential and normal stresses over the periodic bottom, the problem of determining the amplitude growth rate for growing bottom waves is formulated and solved . The obtained solution of the problem allows us to determine the characteristic time of the growth of the bottom wave, the growth rate of the bottom wave and its maximum amplitude, depending on the physical and particle size characteristics of the bottom material and the hydraulic parameters of the water flow. On the example of the development of a periodic sinusoidal bottom wave of low steepness, the verification of the solution obtained for the formulated problem is carried out. The obtained analytical solution to the problem allows us to determine the growth rate of the amplitude of the bottom wave from the current value of its amplitude. Comparison of the obtained solution with experimental data showed their good qualitative and quantitative agreement.

  2. Kashchenko N.M., Ishanov S.A., Matsievsky S.V.
    Simulation equatorial plasma bubbles started from plasma clouds
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 463-476

    Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable.

    A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000–7000 c for the Earth equatorial ionosphere.

    Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere.

    Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors.

    Views (last year): 14.
  3. Zakharov P.V.
    The effect of nonlinear supratransmission in discrete structures: a review
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617

    This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.

    The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.

    Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.

  4. Giricheva E.E.
    Modeling of plankton community state with density-dependent death and spatial activity of zooplankton
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 549-560

    A vertically distributed three-component model of marine ecosystem is considered. State of the plankton community with nutrients is analyzed under the active movement of zooplankton in a vertical column of water. The necessary conditions of the Turing instability in the vicinity of the spatially homogeneous equilibrium are obtained. Stability of the spatially homogeneous equilibrium, the Turing instability and the oscillatory instability are examined depending on the biological characteristics of zooplankton and spatial movement of plankton. It is shown that at low values of zooplankton grazing rate and intratrophic interaction rate the system is Turing instable when the taxis rate is low. Stabilization occurs either through increased decline of zooplankton either by increasing the phytoplankton diffusion. With the increasing rate of consumption of phytoplankton range of parameters that determine the stability is reduced. A type of instability depends on the phytoplankton diffusion. For large values of diffusion oscillatory instability is observed, with a decrease in the phytoplankton diffusion zone of Turing instability is increases. In general, if zooplankton grazing rate is faster than phytoplankton growth rate the spatially homogeneous equilibrium is Turing instable or oscillatory instable. Stability is observed only at high speeds of zooplankton departure or its active movements. With the increase in zooplankton search activity spatial distribution of populations becomes more uniform, increasing the rate of diffusion leads to non-uniform spatial distribution. However, under diffusion the total number of the population is stabilized when the zooplankton grazing rate above the rate of phytoplankton growth. In general, at low rate of phytoplankton consumption the spatial structures formation is possible at low rates of zooplankton decline and diffusion of all the plankton community. With the increase in phytoplankton predation rate the phytoplankton diffusion and zooplankton spatial movement has essential effect on the spatial instability.

    Views (last year): 6.
  5. Kashchenko N.M., Ishanov S.A., Zubkov E.V.
    Numerical model of transport in problems of instabilities of the Earth’s low-latitude ionosphere using a two-dimensional monotonized Z-scheme
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1011-1023

    The aim of the work is to study a monotone finite-difference scheme of the second order of accuracy, created on the basis of a generalization of the one-dimensional Z-scheme. The study was carried out for model equations of the transfer of an incompressible medium. The paper describes a two-dimensional generalization of the Z-scheme with nonlinear correction, using instead of streams oblique differences containing values from different time layers. The monotonicity of the obtained nonlinear scheme is verified numerically for the limit functions of two types, both for smooth solutions and for nonsmooth solutions, and numerical estimates of the order of accuracy of the constructed scheme are obtained.

    The constructed scheme is absolutely stable, but it loses the property of monotony when the Courant step is exceeded. A distinctive feature of the proposed finite-difference scheme is the minimality of its template. The constructed numerical scheme is intended for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems in the solution of which such equations arise is the numerical simulation of highly nonstationary medium-scale processes in the earth’s ionosphere under conditions of the appearance of the Rayleigh – Taylor instability and plasma structures with smaller scales, the generation mechanisms of which are instabilities of other types, which leads to the phenomenon F-scattering. Due to the fact that the transfer processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma incompressibility condition is fulfilled in the direction transverse to the magnetic field.

  6. Rozenblat G.M., Yashina M.V.
    Numerical and analytical study of the motion of Maxwell’s pendulum
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 123-136

    The article considers the problem of the stability of the vertical position of a Maxwell pendulum during its periodic up-down movements. Two types of transition movements are considered: “stop” — occurs when the body of the pendulum in its highest position on the string (during its “standard” upward movement) stops for a moment; “two-link pendulum” — occurs when the entire thread from the body of the pendulum is selected (the lowest position of the body on the thread during its “standard” downward movement), and the body is forced to rotate relative to the thread around the point of its attachment to the body. It is shown that for any values of the pendulum parameters, this position is unstable in the sense that oscillations of the thread around the vertical of finite amplitude occur in the system for arbitrarily small initial deviations. In addition, it has been established that no shock phenomena occur during the movement of the Maxwell pendulum, and the model of this pendulum itself, with the values of its parameters often used in the literature, is incorrect according to Hadamard. In this work, it is shown that the vertical position of the pendulum threads during the indicated oscillatory movements of the body along the threads for any non-degenerate values of the parameters of the Maxwell pendulum is always unstable in the above sense. Moreover, this instability is caused precisely by transitional movements of the 2nd type. In this work, it is further shown that no jumps in speeds or accelerations (due to which shocks or “jerks” in the tension of the threads can occur) do not occur during the indicated movements of the Maxwell pendulum model under consideration. In our opinion, the “jerks” observed in the experiments are due to other reasons, for example, the technical imperfection of the instruments on which the experiments were carried out.

  7. Giricheva E.E., Abakumov A.I.
    Spatiotemporal dynamics and the principle of competitive exclusion in community
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824

    Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.

    Views (last year): 11.
  8. Giricheva E.E.
    Analysis of taxis-driven instability of a predator–prey system through the plankton community model
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 185-199

    The paper deals with a prey-predator model, which describes the spatiotemporal dynamics of plankton community and the nutrients. The system is described by reaction-diffusion-advection equations in a onedimensional vertical column of water in the surface layer. Advective term of the predator equation represents the vertical movements of zooplankton with velocity, which is assumed to be proportional to the gradient of phytoplankton density. This study aimed to determine the conditions under which these movements (taxis) lead to the spatially heterogeneous structures generated by the system. Assuming diffusion coefficients of all model components to be equal the instability of the system in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations is analyzed.

    Necessary conditions for the flow-induced instability were obtained through linear stability analysis. Depending on the local kinetics parameters, increasing the taxis rate leads to Turing or wave instability. This fact is in good agreement with conditions for the emergence of spatial and spatiotemporal patterns in a minimal phytoplankton–zooplankton model after flow-induced instabilities derived by other authors. This mechanism of generating patchiness is more general than the Turing mechanism, which depends on strong conditions on the diffusion coefficients.

    While the taxis exceeding a certain critical value, the wave number corresponding to the fastest growing mode remains unchanged. This value determines the type of spatial structure. In support of obtained results, the paper presents the spatiotemporal dynamics of the model components demonstrating Turing-type pattern and standing wave pattern.

  9. Kovalenko I.B., Dreval V.D., Fedorov V.A., Kholina E.G., Gudimchuk N.B.
    Microtubule protofilament bending characterization
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 435-443

    This work is devoted to the analysis of conformational changes in tubulin dimers and tetramers, in particular, the assessment of the bending of microtubule protofilaments. Three recently exploited approaches for estimating the bend of tubulin protofilaments are reviewed: (1) measurement of the angle between the vector passing through the H7 helices in $\alpha$ and $\beta$ tubulin monomers in the straight structure and the same vector in the curved structure of tubulin; (2) measurement of the angle between the vector, connecting the centers of mass of the subunit and the associated GTP nucleotide, and the vector, connecting the centers of mass of the same nucleotide and the adjacent tubulin subunit; (3) measurement of the three rotation angles of the bent tubulin subunit relative to the straight subunit. Quantitative estimates of the angles calculated at the intra- and inter-dimer interfaces of tubulin in published crystal structures, calculated in accordance with the three metrics, are presented. Intra-dimer angles of tubulin in one structure, measured by the method (3), as well as measurements by this method of the intra-dimer angles in different structures, were more similar, which indicates a lower sensitivity of the method to local changes in tubulin conformation and characterizes the method as more robust. Measuring the angle of curvature between H7-helices (method 1) produces somewhat underestimated values of the curvature per dimer. Method (2), while at first glance generating the bending angle values, consistent the with estimates of curved protofilaments from cryoelectron microscopy, significantly overestimates the angles in the straight structures. For the structures of tubulin tetramers in complex with the stathmin protein, the bending angles calculated with all three metrics varied quite significantly for the first and second dimers (up to 20% or more), which indicates the sensitivity of all metrics to slight variations in the conformation of tubulin dimers within these complexes. A detailed description of the procedures for measuring the bending of tubulin protofilaments, as well as identifying the advantages and disadvantages of various metrics, will increase the reproducibility and clarity of the analysis of tubulin structures in the future, as well as it will hopefully make it easier to compare the results obtained by various scientific groups.

  10. Giricheva E.E.
    Pattern formation of a three-species predator – prey model with prey-taxis and omnivorous predator
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1617-1634

    The spatiotemporal dynamics of a three-component model for food web is considered. The model describes the interactions among resource, prey and predator that consumes both species. In a previous work, the author analyzed the model without taking into account spatial heterogeneity. This study continues the model study of the community considering the diffusion of individuals, as well as directed movements of the predator. It is assumed that the predator responds to the spatial change in the resource and prey density by occupying areas where species density is higher or avoiding them. Directed predator movement is described by the advection term, where velocity is proportional to the gradient of resource and prey density. The system is considered on a one-dimensional domain with zero-flux conditions as boundary ones. The spatiotemporal dynamics produced by model is determined by the system stability in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations. The paper analyzes the possibility of wave instability leading to the emergence of autowaves and Turing instability, as a result of which stationary patterns are formed. Sufficient conditions for the existence of both types of instability are obtained. The influence of local kinetic parameters on the spatial structure formation was analyzed. It was shown that only Turing instability is possible when taxis on the resource is positive, but with a negative taxis, both types of instability are possible. The numerical solution of the system was found by using method of lines (MOL) with the numerical integration of ODE system by means of splitting techniques. The spatiotemporal dynamics of the system is presented in several variants, realizing one of the instability types. In the case of a positive taxis on the prey, both autowave and stationary structures are formed in smaller regions, with an increase in the region size, Turing structures are not formed. For negative taxis on the prey, stationary patterns is observed in both regions, while periodic structures appear only in larger areas.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"