Результаты поиска по 'information':
Найдено статей: 168
  1. Salem N., Al-Tarawneh K., Hudaib A., Salem H., Tareef A., Salloum H., Mazzara M.
    Generating database schema from requirement specification based on natural language processing and large language model
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1703-1713

    A Large Language Model (LLM) is an advanced artificial intelligence algorithm that utilizes deep learning methodologies and extensive datasets to process, understand, and generate humanlike text. These models are capable of performing various tasks, such as summarization, content creation, translation, and predictive text generation, making them highly versatile in applications involving natural language understanding. Generative AI, often associated with LLMs, specifically focuses on creating new content, particularly text, by leveraging the capabilities of these models. Developers can harness LLMs to automate complex processes, such as extracting relevant information from system requirement documents and translating them into a structured database schema. This capability has the potential to streamline the database design phase, saving significant time and effort while ensuring that the resulting schema aligns closely with the given requirements. By integrating LLM technology with Natural Language Processing (NLP) techniques, the efficiency and accuracy of generating database schemas based on textual requirement specifications can be significantly enhanced. The proposed tool will utilize these capabilities to read system requirement specifications, which may be provided as text descriptions or as Entity-Relationship Diagrams (ERDs). It will then analyze the input and automatically generate a relational database schema in the form of SQL commands. This innovation eliminates much of the manual effort involved in database design, reduces human errors, and accelerates development timelines. The aim of this work is to provide a tool can be invaluable for software developers, database architects, and organizations aiming to optimize their workflow and align technical deliverables with business requirements seamlessly.

  2. Shakhgeldyan K.I., Kuksin N.S., Domzhalov I.G., Pak R.L., Geltser B.I.
    Random forest of risk factors as a predictive tool for adverse events in clinical medicine
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 987-1004

    The aim of study was to develop an ensemble machine learning method for constructing interpretable predictive models and to validate it using the example of predicting in-hospital mortality (IHM) in patients with ST-segment elevation myocardial infarction (STEMI).

    A retrospective cohort study was conducted using data from 5446 electronic medical records of STEMI patients who underwent percutaneous coronary intervention (PCI). Patients were divided into two groups: 335 (6.2%) patients who died during hospitalization and 5111 (93.8%) patients with a favourable in-hospital outcome. A pool of potential predictors was formed using statistical methods. Through multimetric categorization (minimizing p-values, maximizing the area under the ROC curve (AUC), and SHAP value analysis), decision trees, and multivariable logistic regression (MLR), predictors were transformed into risk factors for IHM. Predictive models for IHM were developed using MLR, Random Forest Risk Factors (RandFRF), Stochastic Gradient Boosting (XGboost), Random Forest (RF), Adaptive boosting, Gradient Boosting, Light Gradient-Boosting Machine, Categorical Boosting (CatBoost), Explainable Boosting Machine and Stacking methods.

    Authors developed the RandFRF method, which integrates the predictive outcomes of modified decision trees, identifies risk factors and ranks them based on their contribution to the risk of adverse outcomes. RandFRF enables the development of predictive models with high discriminative performance (AUC 0.908), comparable to models based on CatBoost and Stacking (AUC 0.904 and 0.908, respectively). In turn, risk factors provide clinicians with information on the patient’s risk group classification and the extent of their impact on the probability of IHM. The risk factors identified by RandFRF can serve not only as rationale for the prediction results but also as a basis for developing more accurate models.

  3. Belyaeva A.V.
    Comparing the effectiveness of computer mass appraisal methods
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 185-196

    Location-based models — one of areas of CAMA (computer-assisted mass apriasal) building. When taking into account the location of the object using spatial autoregressive models structure of models (type of spatial autocorrelation, choice of “nearest neighbors”) cannot always be determined before its construction. Moreover, in practice there are situations where more efficient methods are taking into account different rates depending on the type of the object from its location. In this regard there are important issues in spatial methods area:

    – fields of methods efficacy;

    – sensitivity of the methods on the choice of the type of spatial model and on the selected number of nearest neighbors.

    This article presents a methodology for assessing the effectiveness of computer evaluation of real estate objects. There are results of approbation on methods based on location information of the objects.

    Views (last year): 2.
  4. Shumov V.V., Korepanov V.O.
    Mathematical models of combat and military operations
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 217-242

    Simulation of combat and military operations is the most important scientific and practical task aimed at providing the command of quantitative bases for decision-making. The first models of combat were developed during the First World War (M. Osipov, F. Lanchester), and now they are widely used in connection with the massive introduction of automation tools. At the same time, the models of combat and war do not fully take into account the moral potentials of the parties to the conflict, which motivates and motivates the further development of models of battle and war. A probabilistic model of combat is considered, in which the parameter of combat superiority is determined through the parameter of moral (the ratio of the percentages of the losses sustained by the parties) and the parameter of technological superiority. To assess the latter, the following is taken into account: command experience (ability to organize coordinated actions), reconnaissance, fire and maneuverability capabilities of the parties and operational (combat) support capabilities. A game-based offensive-defense model has been developed, taking into account the actions of the first and second echelons (reserves) of the parties. The target function of the attackers in the model is the product of the probability of a breakthrough by the first echelon of one of the defense points by the probability of the second echelon of the counterattack repelling the reserve of the defenders. Solved the private task of managing the breakthrough of defense points and found the optimal distribution of combat units between the trains. The share of troops allocated by the parties to the second echelon (reserve) increases with an increase in the value of the aggregate combat superiority parameter of those advancing and decreases with an increase in the value of the combat superiority parameter when repelling a counterattack. When planning a battle (battles, operations) and the distribution of its troops between echelons, it is important to know not the exact number of enemy troops, but their capabilities and capabilities, as well as the degree of preparedness of the defense, which does not contradict the experience of warfare. Depending on the conditions of the situation, the goal of an offensive may be to defeat the enemy, quickly capture an important area in the depth of the enemy’s defense, minimize their losses, etc. For scaling the offensive-defense model for targets, the dependencies of the losses and the onset rate on the initial ratio of the combat potentials of the parties were found. The influence of social costs on the course and outcome of wars is taken into account. A theoretical explanation is given of a loss in a military company with a technologically weak adversary and with a goal of war that is unclear to society. To account for the influence of psychological operations and information wars on the moral potential of individuals, a model of social and information influence was used.

  5. Matveev A.V.
    Modeling the kinetics of radiopharmaceuticals with iodine isotopes in nuclear medicine problems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 883-905

    Radiopharmaceuticals with iodine radioisotopes are now widely used in imaging and non-imaging methods of nuclear medicine. When evaluating the results of radionuclide studies of the structural and functional state of organs and tissues, parallel modeling of the kinetics of radiopharmaceuticals in the body plays an important role. The complexity of such modeling lies in two opposite aspects. On the one hand, excessive simplification of the anatomical and physiological characteristics of the organism when splitting it to the compartments that may result in the loss or distortion of important clinical diagnosis information, on the other – excessive, taking into account all possible interdependencies of the functioning of the organs and systems that, on the contrary, will lead to excess amount of absolutely useless for clinical interpretation of the data or the mathematical model becomes even more intractable. Our work develops a unified approach to the construction of mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Based on this approach, three- and four-compartment pharmacokinetic models were developed and corresponding calculation programs were created in the C++ programming language for processing and evaluating the results of radionuclide diagnostics and therapy. Various methods for identifying model parameters based on quantitative data from radionuclide studies of the functional state of vital organs are proposed. The results of pharmacokinetic modeling for radionuclide diagnostics of the liver, kidney, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. Using clinical and diagnostic data, individual pharmacokinetic parameters of transport of different radiopharmaceuticals in the body (transport constants, half-life periods, maximum activity in the organ and the time of its achievement) were determined. It is shown that the pharmacokinetic characteristics for each patient are strictly individual and cannot be described by averaged kinetic parameters. Within the framework of three pharmacokinetic models, “Activity–time” relationships were obtained and analyzed for different organs and tissues, including for tissues in which the activity of a radiopharmaceutical is impossible or difficult to measure by clinical methods. Also discussed are the features and the results of simulation and dosimetric planning of radioiodine therapy of the thyroid gland. It is shown that the values of absorbed radiation doses are very sensitive to the kinetic parameters of the compartment model. Therefore, special attention should be paid to obtaining accurate quantitative data from ultrasound and thyroid radiometry and identifying simulation parameters based on them. The work is based on the principles and methods of pharmacokinetics. For the numerical solution of systems of differential equations of the pharmacokinetic models we used Runge–Kutta methods and Rosenbrock method. The Hooke–Jeeves method was used to find the minimum of a function of several variables when identifying modeling parameters.

  6. Elaraby A.E., Nechaevskiy A.V.
    An effective segmentation approach for liver computed tomography scans using fuzzy exponential entropy
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 195-202

    Accurate segmentation of liver plays important in contouring during diagnosis and the planning of treatment. Imaging technology analysis and processing are wide usage in medical diagnostics, and therapeutic applications. Liver segmentation referring to the process of automatic or semi-automatic detection of liver image boundaries. A major difficulty in segmentation of liver image is the high variability as; the human anatomy itself shows major variation modes. In this paper, a proposed approach for computed tomography (CT) liver segmentation is presented by combining exponential entropy and fuzzy c-partition. Entropy concept has been utilized in various applications in imaging computing domain. Threshold techniques based on entropy have attracted a considerable attention over the last years in image analysis and processing literatures and it is among the most powerful techniques in image segmentation. In the proposed approach, the computed tomography (CT) of liver is transformed into fuzzy domain and fuzzy entropies are defined for liver image object and background. In threshold selection procedure, the proposed approach considers not only the information of liver image background and object, but also interactions between them as the selection of threshold is done by find a proper parameter combination of membership function such that the total fuzzy exponential entropy is maximized. Differential Evolution (DE) algorithm is utilizing to optimize the exponential entropy measure to obtain image thresholds. Experimental results in different CT livers scan are done and the results demonstrate the efficient of the proposed approach. Based on the visual clarity of segmented images with varied threshold values using the proposed approach, it was observed that liver segmented image visual quality is better with the results higher level of threshold.

  7. Tomonin Y.D., Tominin V.D., Borodich E.D., Kovalev D.A., Dvurechensky P.E., Gasnikov A.V., Chukanov S.V.
    On Accelerated Methods for Saddle-Point Problems with Composite Structure
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 433-467

    We consider strongly-convex-strongly-concave saddle-point problems with general non-bilinear objective and different condition numbers with respect to the primal and dual variables. First, we consider such problems with smooth composite terms, one of which has finite-sum structure. For this setting we propose a variance reduction algorithm with complexity estimates superior to the existing bounds in the literature. Second, we consider finite-sum saddle-point problems with composite terms and propose several algorithms depending on the properties of the composite terms. When the composite terms are smooth we obtain better complexity bounds than the ones in the literature, including the bounds of a recently proposed nearly-optimal algorithms which do not consider the composite structure of the problem. If the composite terms are prox-friendly, we propose a variance reduction algorithm that, on the one hand, is accelerated compared to existing variance reduction algorithms and, on the other hand, provides in the composite setting similar complexity bounds to the nearly-optimal algorithm which is designed for noncomposite setting. Besides, our algorithms allow one to separate the complexity bounds, i. e. estimate, for each part of the objective separately, the number of oracle calls that is sufficient to achieve a given accuracy. This is important since different parts can have different arithmetic complexity of the oracle, and it is desired to call expensive oracles less often than cheap oracles. The key thing to all these results is our general framework for saddle-point problems, which may be of independent interest. This framework, in turn is based on our proposed Accelerated Meta-Algorithm for composite optimization with probabilistic inexact oracles and probabilistic inexactness in the proximal mapping, which may be of independent interest as well.

  8. Salikhova T.Y., Pushin D.M., Guria G.T.
    Investigation of shear-induced platelet activation in arteriovenous fistulas for haemodialysis
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 703-721

    Numerical modeling of shear-induced platelet activation in haemodialysis arteriovenous fistulas was carried out in this work. The goal was to investigate the mechanisms of threshold shear-induced platelet activation in fistulas. For shear-induced platelet activation to take place, shear stress accumulated by platelets along corresponding trajectories in blood flow had to exceed a definite threshold value. The threshold value of cumulative shear stress was supposed to depend on the multimer size of von Willebrand factor macromolecules acting as hydrodynamic sensors for platelets. The effect of arteriovenous fistulas parameters, such as the anastomotic angle, blood flow rate, and the multimer size of von Willebrand factor macromolecules, on platelet activation risk was studied. Parametric diagrams have been constructed that make it possible to distinguish the areas of parameters corresponding to the presence or absence of shear-induced platelet activation. Scaling relations that approximate critical curves on parametric diagrams were obtained. Analysis showed that threshold fistula flow rate is higher for obtuse anastomotic angle than for sharp ones. This means that a fistula with obtuse angle can be used in wider flow rate range without risk of platelet activation. In addition, a study of different anastomosis configurations of arteriovenous fistulas showed that the configuration “end of vein to end of artery” is among the safest. For all the investigated anastomosis configurations, the critical curves on the parametric diagrams were monotonically decreasing functions of von Willebrand factor multimer size. It was shown that fistula flow rate should have a significant impact on the probability of thrombus formation initiation, while the direction of flow through the distal artery did not affect platelet activation. The obtained results allowed to determine the safest fistula configurations with respect to thrombus formation triggering. The authors believe that the results of the work may be of interest to doctors performing surgical operations for creation of arteriovenous fistulas for haemodialysis. In the final section of the work, possible clinical applications of the obtained results by means of mathematical modeling are discussed.

  9. Shinyaeva T.S.
    Activity dynamics in virtual networks: an epidemic model vs an excitable medium model
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1485-1499

    Epidemic models are widely used to mimic social activity, such as spreading of rumors or panic. Simultaneously, models of excitable media are traditionally used to simulate the propagation of activity. Spreading of activity in the virtual community was simulated within two models: the SIRS epidemic model and the Wiener – Rosenblut model of the excitable media. We used network versions of these models. The network was assumed to be heterogeneous, namely, each element of the network has an individual set of characteristics, which corresponds to different psychological types of community members. The structure of a virtual network relies on an appropriate scale-free network. Modeling was carried out on scale-free networks with various values of the average degree of vertices. Additionally, a special case was considered, namely, a complete graph corresponding to a close professional group, when each member of the group interacts with each. Participants in a virtual community can be in one of three states: 1) potential readiness to accept certain information; 2) active interest to this information; 3) complete indifference to this information. These states correspond to the conditions that are usually used in epidemic models: 1) susceptible to infection, 2) infected, 3) refractory (immune or death due to disease). A comparison of the two models showed their similarity both at the level of main assumptions and at the level of possible modes. Distribution of activity over the network is similar to the spread of infectious diseases. It is shown that activity in virtual networks may experience fluctuations or decay.

  10. Kalachin S.V.
    Fuzzy modeling of human susceptibility to panic situations
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 203-218

    The study of the mechanism for the development of mass panic in view of its extreme importance and social danger is an important scientific task. Available information about the mechanism of her development is based mainly on the work of psychologists and belongs to the category of inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of a person's susceptibility to panic situations. As a result of the study, an fuzzy model was developed, consisting of blocks: “Fuzzyfication”, where the degree of belonging of the values of the input parameters to fuzzy sets is calculated; “Inference” where, based on the degree of belonging of the input parameters, the resulting function of belonging of the output value to an odd model is calculated; “Defuzzyfication”, where using the center of gravity method, the only quantitative value of the output variable characterizing a person's susceptibility to panic situations is determined Since the real quantitative values for linguistic variables mental properties of a person are unknown, then to assess the quality of the developed model, without endangering people, it is not possible. Therefore, the quality of the results of fuzzy modeling was estimated by the calculated value of the determination coefficient R2, which showed that the developed fuzzy model belongs to the category of good quality models $(R^2 = 0.93)$, which confirms the legitimacy of the assumptions made during her development. In accordance with to the results of the simulation, human susceptibility to panic situations for sanguinics and cholerics can be attributed to “increased” (0.88), and for phlegmatics and melancholics — to “moderate” (0.38). This means that cholerics and sanguinics can become epicenters of panic and the initiators of stampede, and phlegmatics and melancholics — obstacles to evacuation routes. What should be taken into account when developing effective evacuation measures, the main task of which is to quickly and safely evacuate people from adverse conditions. In the approved methods, the calculation of normative values of safety parameters is based on simplified analytical models of human flow movement, because a large number of factors have to be taken into account, some of which are quantitatively uncertain. The obtained result in the form of quantitative estimates of a person's susceptibility to panic situations will increase the accuracy of calculations.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"