Результаты поиска по 'mathematical simulation':
Найдено статей: 142
  1. Polyakov S.V., Podryga V.O.
    A study of nonlinear processes at the interface between gas flow and the metal wall of a microchannel
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 781-794

    The work is devoted to the study of the influence of nonlinear processes in the boundary layer on the general nature of gas flows in microchannels of technical systems. Such a study is actually concerned with nanotechnology problems. One of the important problems in this area is the analysis of gas flows in microchannels in the case of transient and supersonic flows. The results of this analysis are important for the gas-dynamic spraying techique and for the synthesis of new nanomaterials. Due to the complexity of the implementation of full-scale experiments on micro- and nanoscale, they are most often replaced by computer simulations. The efficiency of computer simulations is achieved by both the use of new multiscale models and the combination of mesh and particle methods. In this work, we use the molecular dynamics method. It is applied to study the establishment of a gas microflow in a metal channel. Nitrogen was chosen as the gaseous medium. The metal walls of the microchannels consisted of nickel atoms. In numerical experiments, the accommodation coefficients were calculated at the boundary between the gas flow and the metal wall. The study of the microsystem in the boundary layer made it possible to form a multicomponent macroscopic model of the boundary conditions. This model was integrated into the macroscopic description of the flow based on a system of quasi-gas-dynamic equations. On the basis of such a transformed gas-dynamic model, calculations of microflow in real microsystem were carried out. The results were compared with the classical calculation of the flow, which does not take into account nonlinear processes in the boundary layer. The comparison showed the need to use the developed model of boundary conditions and its integration with the classical gas-dynamic approach.

  2. Koubassova N.A., Tsaturyan A.K.
    Molecular dynamics assessment of the mechanical properties of fibrillar actin
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1081-1092

    Actin is a conserved structural protein that is expressed in all eukaryotic cells. When polymerized, it forms long filaments of fibrillar actin, or F-actin, which are involved in the formation of the cytoskeleton, in muscle contraction and its regulation, and in many other processes. The dynamic and mechanical properties of actin are important for interaction with other proteins and the realization of its numerous functions in the cell. We performed 204.8 ns long molecular dynamics (MD) simulations of an actin filament segment consisting of 24 monomers in the absence and the presence of MgADP at 300 K in the presence of a solvent and at physiological ionic strength using the AMBER99SBILDN and CHARMM36 force fields in the GROMACS software environment, using modern structural models as the initial structure obtained by high-resolution cryoelectron microscopy. MD calculations have shown that the stationary regime of fluctuations in the structure of the F-actin long segment is developed 80–100 ns after the start of the MD trajectory. Based on the results of MD calculations, the main parameters of the actin helix and its bending, longitudinal, and torsional stiffness were estimated using a section of the calculation model that is far enough away from its ends. The estimated subunit axial (2.72–2.75 nm) and angular (165–168) translation of the F-actin helix, its bending (2.8–4.7 · 10−26 N·m2), longitudinal (36–47·10−9 N), and torsional (2.6–3.1·10−26 N·m2) stiffness are in good agreement with the results of the most reliable experiments. The results of MD calculations have shown that modern structural models of F-actin make it possible to accurately describe its dynamics and mechanical properties, provided that computational models contain a sufficiently large number of monomers, modern force fields, and relatively long MD trajectories are used. The inclusion of actin partner proteins, in particular, tropomyosin and troponin, in the MD model can help to understand the molecular mechanisms of such important processes as the regulation of muscle contraction.

  3. Tskhai A.A., Romanov M.A., Kupriianov V.A.
    Model of assimilation potential in lake ecosystem on the example of biogenic pollutants
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1447-1465

    A model of biogeochemical cycles for nutrient transformation in the ecosystem of a water body has been developed using the example of the Lake Teletskoye (TL) to assess its assimilation potential in the absence of direct measurements for total nitrogen and phosphorus concentrations, instead of which the corresponding simulated data. The validity is justified by checking the adequacy of the simulation results to the data of average monthly long-term observations for all variables of the state for model. The model was calibrated with taking into account data from observations of water quality in 1985–2003, as well as a scenario version of the hydrological regime in 2016. The analysis of the intra-annual changeability of state variables, nitrogen and phosphorus inputs and outputs in TL water is given. The preliminary values of the permissible load N and P on the lake is accessed. The model analysis showed that the lake has practically no assimilation potential with respect to phosphorus compounds. The corresponding values of concentrations are equal to: Ptot. = 0.013 gP/m3, which is equal to the average annual content over the period of 18-year observations. The threshold content of Ntot. = 0.895 gN/m3. The assimilation potential for nitrogen is small, within the second significant digit after the decimal point, bearing in mind that its simulated average annual value is 0.836 gN/m3. The results of simulation indicate that the TL waters, due to the low water temperatures, along with their unique purity, differ in an extremely poorly developed community of hydrobionts. In the case of other lakes, the increase of anthropogenic pressure could be mitigated by utilization due to the vital activity of sufficiently developed hydrobionts communities. Here, there is no sufficient self-purification resource, and a relatively small increase in anthropogenic load can lead to a violation of the sustainability.

  4. Kondratyev M.A.
    Forecasting methods and models of disease spread
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 863-882

    The number of papers addressing the forecasting of the infectious disease morbidity is rapidly growing due to accumulation of available statistical data. This article surveys the major approaches for the shortterm and the long-term morbidity forecasting. Their limitations and the practical application possibilities are pointed out. The paper presents the conventional time series analysis methods — regression and autoregressive models; machine learning-based approaches — Bayesian networks and artificial neural networks; case-based reasoning; filtration-based techniques. The most known mathematical models of infectious diseases are mentioned: classical equation-based models (deterministic and stochastic), modern simulation models (network and agent-based).

    Views (last year): 71. Citations: 19 (RSCI).
  5. Aksenov A.A., Zhluktov S.V., Shmelev V.V., Zhestkov M.N., Rogozhkin S.A., Pakholkov V.V., Shepelev S.F.
    Development of methodology for computational analysis of thermo-hydraulic processes proceeding in fast-neutron reactor with FlowVision CFD software
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 87-94

    An approach to numerical analysis of thermo-hydraulic processes proceeding in a fast-neutron reactor is described in the given article. The description covers physical models, numerical schemes and geometry simplifications accepted in the computational model. Steady-state and dynamic regimes of reactor operation are considered. The steady-state regimes simulate the reactor operation at nominal power. The dynamic regimes simulate the shutdown reactor cooling by means of the heat-removal system.

    Simulation of thermo-hydraulic processes is carried out in the FlowVision CFD software. A mathematical model describing the coolant flow in the first loop of the fast-neutron reactor was developed on the basis of the available geometrical model. The flow of the working fluid in the reactor simulator is calculated under the assumption that the fluid density does not depend on pressure, with use a $k–\varepsilon$ turbulence model, with use of a model of dispersed medium, and with account of conjugate heat exchange. The model of dispersed medium implemented in the FlowVision software allowed taking into account heat exchange between the heat-exchanger lops. Due to geometric complexity of the core region, the zones occupied by the two heat exchangers were modeled by hydraulic resistances and heat sources.

    Numerical simulation of the coolant flow in the FlowVision software enabled obtaining the distributions of temperature, velocity and pressure in the entire computational domain. Using the model of dispersed medium allowed calculation of the temperature distributions in the second loops of the heat exchangers. Besides that, the variation of the coolant temperature along the two thermal probes is determined. The probes were located in the cool and hot chambers of the fast-neutron reactor simulator. Comparative analysis of the numerical and experimental data has shown that the developed mathematical model is correct and, therefore, it can be used for simulation of thermo-hydraulic processes proceeding in fast-neutron reactors with sodium coolant.

    Views (last year): 6. Citations: 1 (RSCI).
  6. Priadein R.B., Stepantsov M.Y.
    On a possible approach to a sport game with discrete time simulation
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 271-279

    The paper proposes an approach to simulation of a sport game, consisting of a discrete set of separate competitions. According to this approach, such a competition is considered as a random processes, generally — a non-Markov’s one. At first we treat the flow of the game as a Markov’s process, obtaining recursive relationship between the probabilities of achieving certain states of score in a tennis match, as well as secondary indicators of the game, such as expectation and variance of the number of serves to finish the game. Then we use a simulation system, modeling the match, to allow an arbitrary change of the probabilities of the outcomes in the competitions that compose the match. We, for instance, allow the probabilities to depend on the results of previous competitions. Therefore, this paper deals with a modification of the model, previously proposed by the authors for sports games with continuous time.

    The proposed approach allows to evaluate not only the probability of the final outcome of the match, but also the probabilities of reaching each of the possible intermediate results, as well as secondary indicators of the game, such as the number of separate competitions it takes to finish the match. The paper includes a detailed description of the construction of a simulation system for a game of a tennis match. Then we consider simulating a set and the whole tennis match by analogy. We show some statements concerning fairness of tennis serving rules, understood as independence of the outcome of a competition on the right to serve first. We perform simulation of a cancelled ATP series match, obtaining its most probable intermediate and final outcomes for three different possible variants of the course of the match.

    The main result of this paper is the developed method of simulation of the match, applicable not only to tennis, but also to other types of sports games with discrete time.

    Views (last year): 9.
  7. Koroleva M.R., Mishenkova O.V., Raeder T., Tenenev V.A., Chernova A.A.
    Numerical simulation of the process of activation of the safety valve
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 495-509

    The conjugate problem of disk movement into gas-filled volume of the spring-type safety valve is solved. The questions of determining the physically correct value of the disk initial lift are considered. The review of existing approaches and methods for solving of such type problems is conducted. The formulation of the problem about the valve actuation when the vessel pressure rises and the mathematical model of the actuation processes are given. A special attention to the binding of physical subtasks is paid. Used methods, numerical schemes and algorithms are described. The mathematical modeling is performed on basе the fundamental system of differential equations for viscous gas movement with the equation for displacement of disk valve. The solution of this problem in the axe symmetric statement is carried out numerically using the finite volume method. The results obtained by the viscous and inviscid models are compared. In an inviscid formulation this problem is solved using the Godunov scheme, and in a viscous formulation is solved using the Kurganov – Tadmor method. The dependence of the disk displacement on time was obtained and compared with the experimental data. The pressure distribution on the disk surface, velocity profiles in the cross sections of the gap for different disk heights are given. It is shown that a value of initial drive lift it does not affect on the gas flow and valve movement part dynamic. It can significantly reduce the calculation time of the full cycle of valve work. Immediate isotahs for various elevations of the disk are presented. The comparison of jet flow over critical section is given. The data carried out by two numerical experiments are well correlated with each other. So, the inviscid model can be applied to the numerical modeling of the safety valve dynamic.

    Views (last year): 34. Citations: 1 (RSCI).
  8. Katasev A.S.
    Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492

    This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.

    Views (last year): 12.
  9. Tukmakov D.A.
    Numerical study of intense shock waves in dusty media with a homogeneous and two-component carrier phase
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 141-154

    The article is devoted to the numerical study of shock-wave flows in inhomogeneous media–gas mixtures. In this work, a two-speed two-temperature model is used, in which the dispersed component of the mixture has its own speed and temperature. To describe the change in the concentration of the dispersed component, the equation of conservation of “average density” is solved. This study took into account interphase thermal interaction and interphase pulse exchange. The mathematical model allows the carrier component of the mixture to be described as a viscous, compressible and heat-conducting medium. The system of equations was solved using the explicit Mac-Cormack second-order finite-difference method. To obtain a monotone numerical solution, a nonlinear correction scheme was applied to the grid function. In the problem of shock-wave flow, the Dirichlet boundary conditions were specified for the velocity components, and the Neumann boundary conditions were specified for the other unknown functions. In numerical calculations, in order to reveal the dependence of the dynamics of the entire mixture on the properties of the solid component, various parameters of the dispersed phase were considered — the volume content as well as the linear size of the dispersed inclusions. The goal of the research was to determine how the properties of solid inclusions affect the parameters of the dynamics of the carrier medium — gas. The motion of an inhomogeneous medium in a shock duct divided into two parts was studied, the gas pressure in one of the channel compartments is more important than in the other. The article simulated the movement of a direct shock wave from a high-pressure chamber to a low–pressure chamber filled with a dusty medium and the subsequent reflection of a shock wave from a solid surface. An analysis of numerical calculations showed that a decrease in the linear particle size of the gas suspension and an increase in the physical density of the material from which the particles are composed leads to the formation of a more intense reflected shock wave with a higher temperature and gas density, as well as a lower speed of movement of the reflected disturbance reflected wave.

  10. Lobacheva L.V., Borisova E.V.
    Simulation of pollution migration processes at municipal solid waste landfills
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 369-385

    The article reports the findings of an investigation into pollution migration processes at the municipal solid waste (MSW) landfill located in the water protection zone of Lake Seliger (Tver Region). The distribution of pollutants is investigated and migration parameters are determined in field and laboratory conditions at the landfill site. A mathematical model describing physical and chemical processes of substance migration in soil strata is constructed. Pollutant migration is found to be due to a variety of factors. The major ones, having a significant impact on the migration of MSW ingredients and taken into account mathematically, include convective transport, diffusion and sorption processes. A modified mathematical model differs from its conventional counterparts by considering a number of parameters reflecting the decrease in the concentration of ammonium and nitrate nitrogen ions in ground water (transpiration by plant roots, dilution with infiltration waters, etc.). An analytical solution to assess the pollutant spread from the landfill is presented. The mathematical model provides a set of simulation models helping to obtain a computational solution of specific problems, vertical and horizontal migration of substances in the underground flow. Numerical experiments, analytical solutions, as well as field and laboratory data was studied the dynamics of pollutant distribution in the object under study up to the lake. A long-term forecast for the spread of landfill pollution is made. Simulation experiments showed that some zones of clean groundwater interact with those of contaminated groundwater during the pollution migration from the landfill, each characterized by a different pollutant content. The data of a computational experiments and analytical calculations are consistent with the findings of field and laboratory investigations of the object and give grounds to recommend the proposed models for predicting pollution migration from a landfill. The analysis of the pollution migration simulation allows to substantiate the numerical estimates of the increase in $NH_4^+$ and $NO_3^-$ ion concentration with the landfill operation time. It is found that, after 100 years following the landfill opening, toxic filtrate components will fill the entire pore space from the landfill to the lake resulting in a significant deterioration of the ecosystem of Lake Seliger.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"