Результаты поиска по 'perturbation method':
Найдено статей: 30
  1. Fasondini M., Hale N., Spoerer R., Weideman J.A.C.
    Quadratic Padé Approximation: Numerical Aspects and Applications
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1017-1031

    Padé approximation is a useful tool for extracting singularity information from a power series. A linear Padé approximant is a rational function and can provide estimates of pole and zero locations in the complex plane. A quadratic Padé approximant has square root singularities and can, therefore, provide additional information such as estimates of branch point locations. In this paper, we discuss numerical aspects of computing quadratic Padé approximants as well as some applications. Two algorithms for computing the coefficients in the approximant are discussed: a direct method involving the solution of a linear system (well-known in the mathematics community) and a recursive method (well-known in the physics community). We compare the accuracy of these two methods when implemented in floating-point arithmetic and discuss their pros and cons. In addition, we extend Luke’s perturbation analysis of linear Padé approximation to the quadratic case and identify the problem of spurious branch points in the quadratic approximant, which can cause a significant loss of accuracy. A possible remedy for this problem is suggested by noting that these troublesome points can be identified by the recursive method mentioned above. Another complication with the quadratic approximant arises in choosing the appropriate branch. One possibility, which is to base this choice on the linear approximant, is discussed in connection with an example due to Stahl. It is also known that the quadratic method is capable of providing reasonable approximations on secondary sheets of the Riemann surface, a fact we illustrate here by means of an example. Two concluding applications show the superiority of the quadratic approximant over its linear counterpart: one involving a special function (the Lambert $W$-function) and the other a nonlinear PDE (the continuation of a solution of the inviscid Burgers equation into the complex plane).

  2. Verichev N.N., Verichev S.N., Erofeev V.I.
    Stationary states and bifurcations in a one-dimensional active medium of oscillators
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 491-512

    This article presents the results of an analytical and computer study of the collective dynamic properties of a chain of self-oscillating systems (conditionally — oscillators). It is assumed that the couplings of individual elements of the chain are non-reciprocal, unidirectional. More precisely, it is assumed that each element of the chain is under the influence of the previous one, while the reverse reaction is absent (physically insignificant). This is the main feature of the chain. This system can be interpreted as an active discrete medium with unidirectional transfer, in particular, the transfer of a matter. Such chains can represent mathematical models of real systems having a lattice structure that occur in various fields of natural science and technology: physics, chemistry, biology, radio engineering, economics, etc. They can also represent models of technological and computational processes. Nonlinear self-oscillating systems (conditionally, oscillators) with a wide “spectrum” of potentially possible individual self-oscillations, from periodic to chaotic, were chosen as the “elements” of the lattice. This allows one to explore various dynamic modes of the chain from regular to chaotic, changing the parameters of the elements and not changing the nature of the elements themselves. The joint application of qualitative methods of the theory of dynamical systems and qualitative-numerical methods allows one to obtain a clear picture of all possible dynamic regimes of the chain. The conditions for the existence and stability of spatially-homogeneous dynamic regimes (deterministic and chaotic) of the chain are studied. The analytical results are illustrated by a numerical experiment. The dynamical regimes of the chain are studied under perturbations of parameters at its boundary. The possibility of controlling the dynamic regimes of the chain by turning on the necessary perturbation at the boundary is shown. Various cases of the dynamics of chains comprised of inhomogeneous (different in their parameters) elements are considered. The global chaotic synchronization (of all oscillators in the chain) is studied analytically and numerically.

  3. Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Newton methods
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703

    We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.

    In this paper, this algorithm is the basis for solving the following problems:

    Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.

    Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.

    Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.

    Views (last year): 7. Citations: 1 (RSCI).
  4. When a supersonic air flow interacts with a transverse secondary jet injected into this flow through an orifice on a flat wall, a special flow structure is formed. This flow takes place during fuel injection into combustion chambers of supersonic aircraft engines; therefore, in recent years, various approaches to intensifying gas mixing in this type of flow have been proposed and studied in several countries. The approach proposed in this work implies using spark discharges for pulsed heating of the gas and generating the instabilities in the shear layer at the boundary of the secondary jet. Using simulation in the software package FlowVision 3.13, the characteristics of this flow were obtained in the absence and presence of pulsed-periodic local heat release on the wall on the windward side of the injector opening. A comparison was made of local characteristics at different periodicities of pulsed heating (corresponding to the values of the Strouhal number 0.25 and 0.31). It is shown that pulsed heating can stimulate the formation of perturbations in the shear layer at the jet boundary. For the case of the absence of heating and for two modes of pulsed heating, the values of an integral criterion for mixing efficiency were calculated. It is shown that pulsed heating can lead both to a decrease in the average mixing efficiency and to its increase (up to 9% in the considered heating mode). The calculation method used (unsteady Reynolds-averaged Navier – Stokes equations with a modified $k-\varepsilon$ turbulence model) was validated by considering a typical case of the secondary transverse jet interaction with a supersonic flow, which was studied by several independent research groups and well documented in the literature. The grid convergence was shown for the simulation of this typical case in FlowVision. A quantitative comparison was made of the results obtained from FlowVision calculations with experimental data and calculations in other programs. The results of this study can be useful for specialists dealing with the problems of gas mixing and combustion in a supersonic flow, as well as the development of engines for supersonic aviation.

  5. Balaji C., Maruthamanikandan S., Rudresha C., Vidyashree V.
    The onset of the Darcy-ferroconvection flow model in a couple stress fluid subjected to a time-periodic magnetic field
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 213-223

    This study investigates the influence of a time-periodic (modulation) magnetic field upon the development of ferroconvection in a densely packed medium saturated with couple stress ferromagnetic fluid. The Darcy model is used to describe the flow in porous medium. The research is important from practical and theoretical point of view. A time-periodic magnetic field is essential in circumscribing channels where the effect of gravity is less or nonexistent to generate circulation. There are numerous engineering uses for this in the manufacturing of magnetic field sensors, charged particle electrode materials, modulators, magnetic resonators, and optical devices. The resulting physical eigenvalue problem is dealt with by using isothermal boundary conditions and the regular perturbation technique with a small time-periodic amplitude. The onset criteria were defined on the supposition that the exchange of stability principle holds. The shift in the thermal Rayleigh number is dependent on the associated parameters: magnetic parameter, Vadasz number, couple stress parameter, porosity, and frequency of the time-periodic function. The results in this case indicate that the onset of ferroconvection can be enhanced or reduced by appropriate changes in the governing parameters.

  6. Bashkirtseva I.A., Boyarshinova P.V., Ryazanova T.V., Ryashko L.B.
    Analysis of noise-induced destruction of coexistence regimes in «prey–predator» population model
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660

    The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.

    Views (last year): 14. Citations: 4 (RSCI).
  7. Doludenko A.N.
    On contact instabilities of viscoplastic fluids in three-dimensional setting
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 431-444

    The Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of viscoplastic (or the Bingham) fluids are studied in the three–dimensional formulation of the problem. A numerical modeling of the intermixing of two fluids with different rheology, whose densities differ twice, as a result of instabilities development process has been carried out. The development of the Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of the Bingham fluids is analyzed utilizing the MacCormack and the Volume of Fluid (VOF) methods to reconstruct the interface during the process. Both the results of numerical simulation of the named instabilities of the Bingham liquids and their comparison with theory and the results of the Newtonian fluid simulation are presented. Critical amplitude of the initial perturbation of the contact boundary velocity field at which the development of instabilities begins was estimated. This critical amplitude presents because of the yield stress exists in the Bingham fluids. Results of numerical calculations show that the yield stress of viscoplastic fluids essentially affects the nature of the development of both Rayleigh–Taylor and Richtmyer–Meshkov instabilities. If the amplitude of the initial perturbation is less than the critical value, then the perturbation decays relatively quickly, and no instability develops.When the initial perturbation exceeds the critical amplitude, the nature of the instability development resembles that of the Newtonian fluid. In a case of the Richtmyer–Meshkov instability, the critical amplitudes of the initial perturbation of the contact boundary at different values of the yield stress are estimated. There is a distinction in behavior of the non-Newtonian fluid in a plane case: with the same value of the yield stress in three-dimensional geometry, the range of the amplitude values of the initial perturbation, when fluid starts to transit from rest to motion, is significantly narrower. In addition, it is shown that the critical amplitude of the initial perturbation of the contact boundary for the Rayleigh–Taylor instability is lower than for the Richtmyer–Meshkov instability. This is due to the action of gravity, which helps the instability to develop and counteracts the forces of viscous friction.

    Views (last year): 19.
  8. Konyukhov A.V., Rostilov T.A.
    Numerical simulation of converging spherical shock waves with symmetry violation
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 59-71

    The study of the development of π-periodic perturbations of a converging spherical shock wave leading to cumulation limitation is performed. The study is based on 3D hydrodynamic calculations with the Carnahan – Starling equation of state for hard sphere fluid. The method of solving the Euler equations on moving (compressing) grids allows one to trace the evolution of the converging shock wave front with high accuracy in a wide range of its radius. The compression rate of the computational grid is adapted to the motion of the shock wave front, while the motion of the boundaries of the computational domain satisfy the condition of its supersonic velocity relative to the medium. This leads to the fact that the solution is determined only by the initial data at the grid compression stage. The second order TVD scheme is used to reconstruct the vector of conservative variables at the boundaries of the computational cells in combination with the Rusanov scheme for calculating the numerical vector of flows. The choice is due to a strong tendency for the manifestation of carbuncle-type numerical instability in the calculations, which is known for other classes of flows. In the three-dimensional case of the observed force, the carbuncle effect was obtained for the first time, which is explained by the specific nature of the flow: the concavity of the shock wave front in the direction of motion, the unlimited (in the symmetric case) growth of the Mach number, and the stationarity of the front on the computational grid. The applied numerical method made it possible to study the detailed flow pattern on the scale of cumulation termination, which is impossible within the framework of the Whitham method of geometric shock wave dynamics, which was previously used to calculate converging shock waves. The study showed that the limitation of cumulation is associated with the transition from the Mach interaction of converging shock wave segments to a regular one due to the progressive increase in the ratio of the azimuthal velocity at the shock wave front to the radial velocity with a decrease in its radius. It was found that this ratio is represented as a product of a limited oscillating function of the radius and a power function of the radius with an exponent depending on the initial packing density in the hard sphere model. It is shown that increasing the packing density parameter in the hard sphere model leads to a significant increase in the pressures achieved in a shock wave with broken symmetry. For the first time in the calculation, it is shown that at the scale of cumulation termination, the flow is accompanied by the formation of high-energy vortices, which involve the substance that has undergone the greatest shock-wave compression. Influencing heat and mass transfer in the region of greatest compression, this circumstance is important for current practical applications of converging shock waves for the purpose of initiating reactions (detonation, phase transitions, controlled thermonuclear fusion).

  9. Popova A.A., Popov V.S.
    Modeling of nonlinear aeroelastic oscillations of a channel wall interacting with a pulsating viscous gas layer
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 583-600

    The mathematical model for aeroelastic oscillations of a narrow channel wall with a nonlinear-elastic suspension and interacting with a pulsating viscous gas layer is proposed. Within the framework of this model, the aeroelastic response of the channel wall and its phase response were determined and investigated. The authors simultaneously studied the influence of the nonlinear stiffness elastic suspension of the wall, compressibility and dissipative properties of gas, as well as the inertia of its motion on the wall oscillations. The model was elaborated based on the formulation and solution of the initial boundary-value plane problem of mathematical physics. The problem governing equations include the equations of dynamics for barotropic viscous gas, equation of dynamics for the rigid wall as the spring-mass nonlinear oscillator. Using the perturbation method, the asymptotic analysis of the problem was carried out. The solution of the equations of dynamics for the thin layer of viscous gas was obtained by the iteration method. As a result, the law of gas pressure distribution in the channel was determined and the initial problem of aeroelasticity was reduced to the study of the generalized Duffing equation. Its solution was realized by the harmonic balance method, which allowed us to determine the aeroelastic and phase responses of the channel wall in the form of implicit functions. The numerical study of these responses was carried out to evaluate the influence for inertia of gas motion and its compressibility, as well as a comparison of the results obtained with the special cases of creeping motion of viscous gas and incompressible viscous fluid. The results of this study have shown the importance of simultaneous consideration of compressibility and inertia of viscous gas motion when modeling aeroelastic oscillations of the considered channel wall.

  10. Shumixin A.G., Aleksandrova A.S.
    Identification of a controlled object using frequency responses obtained from a dynamic neural network model of a control system
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 729-740

    We present results of a study aimed at identification of a controlled object’s channels based on postprocessing of measurements with development of a model of a multiple-input controlled object and subsequent active modelling experiment. The controlled object model is developed using approximation of its behavior by a neural network model using trends obtained during a passive experiment in the mode of normal operation. Recurrent neural network containing feedback elements allows to simulate behavior of dynamic objects; input and feedback time delays allow to simulate behavior of inertial objects with pure delay. The model was taught using examples of the object’s operation with a control system and is presented by a dynamic neural network and a model of a regulator with a known regulation function. The neural network model simulates the system’s behavior and is used to conduct active computing experiments. Neural network model allows to obtain the controlled object’s response to an exploratory stimulus, including a periodic one. The obtained complex frequency response is used to evaluate parameters of the object’s transfer system using the least squares method. We present an example of identification of a channel of the simulated control system. The simulated object has two input ports and one output port and varying transport delays in transfer channels. One of the input ports serves as a controlling stimulus, the second is a controlled perturbation. The controlled output value changes as a result of control stimulus produced by the regulator operating according to the proportional-integral regulation law based on deviation of the controlled value from the task. The obtained parameters of the object’s channels’ transfer functions are close to the parameters of the input simulated object. The obtained normalized error of the reaction for a single step-wise stimulus of the control system model developed based on identification of the simulated control system doesn’t exceed 0.08. The considered objects pertain to the class of technological processes with continuous production. Such objects are characteristic of chemical, metallurgic, mine-mill, pulp and paper, and other industries.

    Views (last year): 10.
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"